November  2016, 21(9): 3053-3073. doi: 10.3934/dcdsb.2016087

Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions

1. 

Jiangsu Provincial Key Laboratory for Numerical Simulation of Large Scale Complex Systems, School of Mathematical Science, Nanjing Normal University, Nanjing 210023

2. 

Department of Applied Mathematics, Nanjing University of Finance and Economics, Nanjing 210023, China

Received  November 2015 Revised  February 2016 Published  October 2016

Three dimensional primitive equations with a small multiplicative noise are studied in this paper. The existence and uniqueness of solutions with small initial value in a fixed probability space are obtained. The proof is based on Galerkin approximation, Itô's formula and weak convergence methods.
Citation: Hongjun Gao, Chengfeng Sun. Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3053-3073. doi: 10.3934/dcdsb.2016087
References:
[1]

C. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics,, Ann. Math., 166 (2007), 245.  doi: 10.4007/annals.2007.166.245.  Google Scholar

[2]

I. Chueshov and A. Millet, Stochastic 2D hydrodynamical type systems: Well posedness and large deviations,, Appl. Math. Optim., 61 (2010), 379.  doi: 10.1007/s00245-009-9091-z.  Google Scholar

[3]

B. Cushman-Roisin and J.-M. Beckers, Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects,, Second edition. With a foreword by John Marshall. International Geophysics Series, (2011).   Google Scholar

[4]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions,, Cambridge University Press, (1992).  doi: 10.1017/CBO9780511666223.  Google Scholar

[5]

A. Debussche, N. Glatt-Holtz and R. Temam, Local martingale and pathwise solutions for an abstract fluids model,, Physica D, 240 (2011), 1123.  doi: 10.1016/j.physd.2011.03.009.  Google Scholar

[6]

A. Debussche, N. Glatt-Holtz, R. Temam and M. Ziane, Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise,, Nonlinearity, 25 (2012), 2093.  doi: 10.1088/0951-7715/25/7/2093.  Google Scholar

[7]

Z. Dong, J. Zhai and R. Zhang, Exponential convergence for 3D stochastic primitive equations of the large scale ocean,, arXiv:1506.08514v1., ().   Google Scholar

[8]

J. Duan and A. Millet, Large deviations for the Boussinesq equations under random influences,, Stochastic Processes and Their Applications, 119 (2009), 2052.  doi: 10.1016/j.spa.2008.10.004.  Google Scholar

[9]

B. Ewald, M. Petcu and R. Temam, Stochastic solutions of the two-dimensional primitive equations of the ocean and atmosphere with an additive noise,, Anal. Appl., 5 (2007), 183.  doi: 10.1142/S0219530507000948.  Google Scholar

[10]

M. I. Freidlin and A. D. Wentzell, Reaction-diffusion equation with randomly perturbed boundary condition,, Annals. of Prob., 20 (1992), 963.  doi: 10.1214/aop/1176989813.  Google Scholar

[11]

H. Gao and C. Sun, Random Attractor for the 3D viscous stochastic primitive equations with additive noise,, Stochastics and Dynamics, 9 (2009), 293.  doi: 10.1142/S0219493709002683.  Google Scholar

[12]

H. Gao and C. Sun, Large Deviations for the Stochastic Primitive Equations in Two Space Dimensions,, Comm. Math. Sci., 10 (2012), 575.  doi: 10.4310/CMS.2012.v10.n2.a8.  Google Scholar

[13]

N. Glatt-Holtz, I. Kukavica, V. Vicol and M. Ziane, Existence and regularity of invariant measures for the three dimensinonal stochastic primitive equations,, J. Math. Phys., 55 (2014).  doi: 10.1063/1.4875104.  Google Scholar

[14]

N. Glatt-Holtz and R. Temam, Pathwise solutions of the 2-d stochastic primitive equations,, Applied Mathematics and Optimization, 63 (2011), 401.  doi: 10.1007/s00245-010-9126-5.  Google Scholar

[15]

N. Glatt-Holtz and M. Ziane, The stochastic primitive equations in two space dimensions with multiplicative noise,, Discrete and Continuous Dynamical Systems Series B, 10 (2008), 801.  doi: 10.3934/dcdsb.2008.10.801.  Google Scholar

[16]

B. Guo and D. Huang, 3D Stochastic Primitive Equations of the Large-Scale Ocean: Global Well-Posedness and Attractors,, Commun. Math. Phys., 286 (2009), 697.  doi: 10.1007/s00220-008-0654-7.  Google Scholar

[17]

F. Guillén-Gonzáez, N. Masmoudi and M. A. Rodríguez-Bellido, Anisotropic estimates and strong solutions of the Primitive Equations,, Diff. Integral Eq., 14 (2001), 1381.   Google Scholar

[18]

C. Hu, R. Temam and M. Ziane, The primitive equations on the large scale ocean under the small depth hypothesis,, Discrete Contin. Dyn. Syst., 9 (2003), 97.  doi: 10.3934/dcds.2003.9.97.  Google Scholar

[19]

N. Ju, The global attractor for the solutions to the 3d viscous primitive equations,, Discrete Contin. Dyn. Syst., 17 (2007), 159.  doi: 10.3934/dcds.2007.17.159.  Google Scholar

[20]

G. Kallianpur and J. Xiong, Large deviations for a class of stochastic partial differential equations,, Ann. Prob., 24 (1996), 320.  doi: 10.1214/aop/1042644719.  Google Scholar

[21]

G. Kobelkov, Existence of a solution in "whole" for the large-scale ocean dynamics equations,, C. R. Math. Acad. Sci. Paris, 343 (2006), 283.  doi: 10.1016/j.crma.2006.04.020.  Google Scholar

[22]

G. M. Kobelkov and V. B. Zalesny, Existence and uniqueness of a solution to primitive equations with stratification 'in the large',, Russian J. Numer. Anal. Math. Modelling, 23 (2008), 39.  doi: 10.1515/rnam.2008.003.  Google Scholar

[23]

I. Kukavica and M. Ziane, On the regularity of the primitive equations of the ocean,, Nonlinearity, 20 (2007), 2739.  doi: 10.1088/0951-7715/20/12/001.  Google Scholar

[24]

H. Kunita, Stochastic Flows and Stochastic Differential Equations,, Cambridge ; New York : Cambridge University Press, (1990).   Google Scholar

[25]

J. L. Lions, R. Temam and S. Wang, Models for the coupled atmosphere and ocean,, Comput. Mech. Adv., 1 (1993), 1.   Google Scholar

[26]

J. L. Lions, R. Temam and S. Wang, New formulations of the primitive equations of atmosphere and applications,, Nonlinearity, 5 (1992), 237.  doi: 10.1088/0951-7715/5/2/001.  Google Scholar

[27]

J. L. Lions, R. Temam and S. Wang, On the equations of the large-scale ocean,, Nonlinearity, 5 (1992), 1007.  doi: 10.1088/0951-7715/5/5/002.  Google Scholar

[28]

J. Pedlosky, Geophysical Fluid Dynamics,, Springer-Verlag, (1987).   Google Scholar

[29]

M. Petcu, Gevrey class regularity for the primitive equations in space dimension 2,, Asymptot. Anal., 39 (2004), 1.   Google Scholar

[30]

M. Petcu, R. Temam and D. Wirosoetisno, Existence and regularity results for the primitive equations in two space dimensions,, Commun. Pure Appl. Anal., 3 (2004), 115.  doi: 10.3934/cpaa.2004.3.115.  Google Scholar

[31]

M. Petcu, R. Temam and M. Ziane, Some Mathematical Problems in Geophysical Fluid Dynamics,, In Special Volume on Computational Methods for the Atmosphere and the Oceans, (2009), 577.  doi: 10.1016/S1570-8659(08)00212-3.  Google Scholar

[32]

S. S. Sritharan and P. Sundar, Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise,, Stoch. Proc. and Appl., 116 (2006), 1636.  doi: 10.1016/j.spa.2006.04.001.  Google Scholar

[33]

C. Sun, Random Dynamics and Large Deviation of Some Hydrodynamics Equations,, Ph.D thesis, (2010).   Google Scholar

[34]

R. Temam and M. Ziane, Some mathematical problems in geophysical fluid dynamics,, Handbook of mathematical fluid dynamics, 3 (2004), 535.   Google Scholar

show all references

References:
[1]

C. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics,, Ann. Math., 166 (2007), 245.  doi: 10.4007/annals.2007.166.245.  Google Scholar

[2]

I. Chueshov and A. Millet, Stochastic 2D hydrodynamical type systems: Well posedness and large deviations,, Appl. Math. Optim., 61 (2010), 379.  doi: 10.1007/s00245-009-9091-z.  Google Scholar

[3]

B. Cushman-Roisin and J.-M. Beckers, Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects,, Second edition. With a foreword by John Marshall. International Geophysics Series, (2011).   Google Scholar

[4]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions,, Cambridge University Press, (1992).  doi: 10.1017/CBO9780511666223.  Google Scholar

[5]

A. Debussche, N. Glatt-Holtz and R. Temam, Local martingale and pathwise solutions for an abstract fluids model,, Physica D, 240 (2011), 1123.  doi: 10.1016/j.physd.2011.03.009.  Google Scholar

[6]

A. Debussche, N. Glatt-Holtz, R. Temam and M. Ziane, Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise,, Nonlinearity, 25 (2012), 2093.  doi: 10.1088/0951-7715/25/7/2093.  Google Scholar

[7]

Z. Dong, J. Zhai and R. Zhang, Exponential convergence for 3D stochastic primitive equations of the large scale ocean,, arXiv:1506.08514v1., ().   Google Scholar

[8]

J. Duan and A. Millet, Large deviations for the Boussinesq equations under random influences,, Stochastic Processes and Their Applications, 119 (2009), 2052.  doi: 10.1016/j.spa.2008.10.004.  Google Scholar

[9]

B. Ewald, M. Petcu and R. Temam, Stochastic solutions of the two-dimensional primitive equations of the ocean and atmosphere with an additive noise,, Anal. Appl., 5 (2007), 183.  doi: 10.1142/S0219530507000948.  Google Scholar

[10]

M. I. Freidlin and A. D. Wentzell, Reaction-diffusion equation with randomly perturbed boundary condition,, Annals. of Prob., 20 (1992), 963.  doi: 10.1214/aop/1176989813.  Google Scholar

[11]

H. Gao and C. Sun, Random Attractor for the 3D viscous stochastic primitive equations with additive noise,, Stochastics and Dynamics, 9 (2009), 293.  doi: 10.1142/S0219493709002683.  Google Scholar

[12]

H. Gao and C. Sun, Large Deviations for the Stochastic Primitive Equations in Two Space Dimensions,, Comm. Math. Sci., 10 (2012), 575.  doi: 10.4310/CMS.2012.v10.n2.a8.  Google Scholar

[13]

N. Glatt-Holtz, I. Kukavica, V. Vicol and M. Ziane, Existence and regularity of invariant measures for the three dimensinonal stochastic primitive equations,, J. Math. Phys., 55 (2014).  doi: 10.1063/1.4875104.  Google Scholar

[14]

N. Glatt-Holtz and R. Temam, Pathwise solutions of the 2-d stochastic primitive equations,, Applied Mathematics and Optimization, 63 (2011), 401.  doi: 10.1007/s00245-010-9126-5.  Google Scholar

[15]

N. Glatt-Holtz and M. Ziane, The stochastic primitive equations in two space dimensions with multiplicative noise,, Discrete and Continuous Dynamical Systems Series B, 10 (2008), 801.  doi: 10.3934/dcdsb.2008.10.801.  Google Scholar

[16]

B. Guo and D. Huang, 3D Stochastic Primitive Equations of the Large-Scale Ocean: Global Well-Posedness and Attractors,, Commun. Math. Phys., 286 (2009), 697.  doi: 10.1007/s00220-008-0654-7.  Google Scholar

[17]

F. Guillén-Gonzáez, N. Masmoudi and M. A. Rodríguez-Bellido, Anisotropic estimates and strong solutions of the Primitive Equations,, Diff. Integral Eq., 14 (2001), 1381.   Google Scholar

[18]

C. Hu, R. Temam and M. Ziane, The primitive equations on the large scale ocean under the small depth hypothesis,, Discrete Contin. Dyn. Syst., 9 (2003), 97.  doi: 10.3934/dcds.2003.9.97.  Google Scholar

[19]

N. Ju, The global attractor for the solutions to the 3d viscous primitive equations,, Discrete Contin. Dyn. Syst., 17 (2007), 159.  doi: 10.3934/dcds.2007.17.159.  Google Scholar

[20]

G. Kallianpur and J. Xiong, Large deviations for a class of stochastic partial differential equations,, Ann. Prob., 24 (1996), 320.  doi: 10.1214/aop/1042644719.  Google Scholar

[21]

G. Kobelkov, Existence of a solution in "whole" for the large-scale ocean dynamics equations,, C. R. Math. Acad. Sci. Paris, 343 (2006), 283.  doi: 10.1016/j.crma.2006.04.020.  Google Scholar

[22]

G. M. Kobelkov and V. B. Zalesny, Existence and uniqueness of a solution to primitive equations with stratification 'in the large',, Russian J. Numer. Anal. Math. Modelling, 23 (2008), 39.  doi: 10.1515/rnam.2008.003.  Google Scholar

[23]

I. Kukavica and M. Ziane, On the regularity of the primitive equations of the ocean,, Nonlinearity, 20 (2007), 2739.  doi: 10.1088/0951-7715/20/12/001.  Google Scholar

[24]

H. Kunita, Stochastic Flows and Stochastic Differential Equations,, Cambridge ; New York : Cambridge University Press, (1990).   Google Scholar

[25]

J. L. Lions, R. Temam and S. Wang, Models for the coupled atmosphere and ocean,, Comput. Mech. Adv., 1 (1993), 1.   Google Scholar

[26]

J. L. Lions, R. Temam and S. Wang, New formulations of the primitive equations of atmosphere and applications,, Nonlinearity, 5 (1992), 237.  doi: 10.1088/0951-7715/5/2/001.  Google Scholar

[27]

J. L. Lions, R. Temam and S. Wang, On the equations of the large-scale ocean,, Nonlinearity, 5 (1992), 1007.  doi: 10.1088/0951-7715/5/5/002.  Google Scholar

[28]

J. Pedlosky, Geophysical Fluid Dynamics,, Springer-Verlag, (1987).   Google Scholar

[29]

M. Petcu, Gevrey class regularity for the primitive equations in space dimension 2,, Asymptot. Anal., 39 (2004), 1.   Google Scholar

[30]

M. Petcu, R. Temam and D. Wirosoetisno, Existence and regularity results for the primitive equations in two space dimensions,, Commun. Pure Appl. Anal., 3 (2004), 115.  doi: 10.3934/cpaa.2004.3.115.  Google Scholar

[31]

M. Petcu, R. Temam and M. Ziane, Some Mathematical Problems in Geophysical Fluid Dynamics,, In Special Volume on Computational Methods for the Atmosphere and the Oceans, (2009), 577.  doi: 10.1016/S1570-8659(08)00212-3.  Google Scholar

[32]

S. S. Sritharan and P. Sundar, Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise,, Stoch. Proc. and Appl., 116 (2006), 1636.  doi: 10.1016/j.spa.2006.04.001.  Google Scholar

[33]

C. Sun, Random Dynamics and Large Deviation of Some Hydrodynamics Equations,, Ph.D thesis, (2010).   Google Scholar

[34]

R. Temam and M. Ziane, Some mathematical problems in geophysical fluid dynamics,, Handbook of mathematical fluid dynamics, 3 (2004), 535.   Google Scholar

[1]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[2]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[3]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[4]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[5]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[6]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[7]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[8]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[9]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[10]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[11]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[12]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[13]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[14]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[15]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[16]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[17]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[18]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[19]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[20]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]