November  2016, 21(9): 3095-3114. doi: 10.3934/dcdsb.2016089

Linear approximation of nonlinear Schrödinger equations driven by cylindrical Wiener processes

1. 

Martin-Luther-University Halle-Wittenberg, Faculty of Natural Sciences II, Institute of Mathematics, 06099 Halle (Saale)

2. 

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Str. Kogălniceanu nr. 1, RO - 400084 Cluj-Napoca

Received  December 2015 Revised  February 2016 Published  October 2016

In this paper the existence and uniqueness of the solution for a stochastic nonlinear Schrödinger equation, which is perturbed by a cylindrical Wiener process is investigated. The existence of the variational solution and of the generalized weak solution are proved by using sequences of successive approximations, which are the solutions of certain linear problems.
Citation: Wilfried Grecksch, Hannelore Lisei. Linear approximation of nonlinear Schrödinger equations driven by cylindrical Wiener processes. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3095-3114. doi: 10.3934/dcdsb.2016089
References:
[1]

N. U. Ahmed, Semigroup Theory with Applications to Systems and Control, Longman Scientific & Technical, Harlow Essex, 1991.

[2]

N. N. Akhmeddiev, A. Ankiewicz and J. M. Soto-Crespo, Singularities and special soliton solutions of the cubic quintic complex Ginzburg-Landau equation, Phys. Rev. E, 53 (1996), 1190-1201, Available from: http://dx.doi.org/10.1103/PhysRevE.53.1190 doi: 10.1103/PhysRevE.53.1190.

[3]

A. De Bouard and A. Debussche, A stochastic nonlinear Schrödinger equation with multiplicative noise, Commun. Math. Phys., 205 (1999), 161-181. doi: 10.1007/s002200050672.

[4]

A. De Bouard and A. Debussche, A semi-discrete scheme for the stochastic nonlinear Schr\"odinger equation, Numer. Math., 96 (2004), 733-770. doi: 10.1007/s00211-003-0494-5.

[5]

A. Biswas and S. Konar, Introduction to Non-Kerr Law Optical Solitons, Chapman and Hall/CRC, 2007.

[6]

Y. Chen, $L^\infty(\mathbb R^n)$ decay for solutions to a class of Schrödinger equations, Appl. Anal., 39 (1990), 209-226. doi: 10.1080/00036819008839982.

[7]

A. Debussche and C. Odasso, Ergodicity for a weakly damped stochastic non-linear Schrödinger equation, J. Evol. Equ., 5 (2005), 317-356. doi: 10.1007/s00028-005-0195-x.

[8]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, University Press, Cambridge, 1992. doi: 10.1017/CBO9780511666223.

[9]

R. Dautray and J.-L. Lions, Mathematical Analysis And Numerical Methods For Science And Technology, Volume 5: Evolution Problems I, Springer Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58090-1.

[10]

W. Grecksch and H. Lisei, Stochastic nonlinear equations of Schrödinger type, Stoch. Anal. Appl., 29 (2011), 631-653. doi: 10.1080/07362994.2011.581091.

[11]

W. Grecksch and C. Tudor, Stochastic Evolution Equations. A Hilbert Space Approach, Akademie Verlag, Berlin, 1995.

[12]

H. M. Itô, Optimal Gaussian solutions of nonlinear stochastic partial differential equations, J. Stat. Phys., 37 (1984), 653-671. doi: 10.1007/BF01010500.

[13]

S. Larsson and V. Thomée, Partial Differential Equations with Numerical Methods, Springer Verlag, Heidelberg, 2003.

[14]

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer Verlag, Berlin-New York, 1971.

[15]

R. Mikulevicius and B. Rozovskii, On martingale problem solutions for stochastic Navier Stokes equations, In: Stochastic Partial Differential Equations and Applications, Edited by G. Da Prato, L. Tubaro. Marcel & Dekker, Inc. New York, Basel, 227 (2002), 405-415.

[16]

C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Mathematics Vol. 1905, Springer Verlag, 2007.

[17]

M. Reed and B. Simao, Methods of Modern Mathematical Physics. IV: Analysis of Operators, Academic Press San Diego, 1978.

[18]

J. J. Rasmussen and K. Rypdal, Blow-up in nonlinear Schroedinger equations-I. A general review, Phys. Scripta., 33 (1986), 481-497. doi: 10.1088/0031-8949/33/6/001.

[19]

B. L. Rozovskii, Stochastic Evolution Systems. Linear Theory and Applications to Nonlinear Filtering, Kluwer Academic Publishers, Dordrecht, 1990. doi: 10.1007/978-94-011-3830-7.

[20]

E. Zeidler, Nonlinear Functional Analysis and Its Applications. I: Fixed-point Theorems, Springer-Verlag, New York, 1986. doi: 10.1007/978-1-4612-4838-5.

[21]

E. Zeidler, Nonlinear Functional Analysis and Its Applications. II/A: Linear Monotone Operators, Springer-Verlag, New York, 1990. doi: 10.1007/978-1-4612-0985-0.

show all references

References:
[1]

N. U. Ahmed, Semigroup Theory with Applications to Systems and Control, Longman Scientific & Technical, Harlow Essex, 1991.

[2]

N. N. Akhmeddiev, A. Ankiewicz and J. M. Soto-Crespo, Singularities and special soliton solutions of the cubic quintic complex Ginzburg-Landau equation, Phys. Rev. E, 53 (1996), 1190-1201, Available from: http://dx.doi.org/10.1103/PhysRevE.53.1190 doi: 10.1103/PhysRevE.53.1190.

[3]

A. De Bouard and A. Debussche, A stochastic nonlinear Schrödinger equation with multiplicative noise, Commun. Math. Phys., 205 (1999), 161-181. doi: 10.1007/s002200050672.

[4]

A. De Bouard and A. Debussche, A semi-discrete scheme for the stochastic nonlinear Schr\"odinger equation, Numer. Math., 96 (2004), 733-770. doi: 10.1007/s00211-003-0494-5.

[5]

A. Biswas and S. Konar, Introduction to Non-Kerr Law Optical Solitons, Chapman and Hall/CRC, 2007.

[6]

Y. Chen, $L^\infty(\mathbb R^n)$ decay for solutions to a class of Schrödinger equations, Appl. Anal., 39 (1990), 209-226. doi: 10.1080/00036819008839982.

[7]

A. Debussche and C. Odasso, Ergodicity for a weakly damped stochastic non-linear Schrödinger equation, J. Evol. Equ., 5 (2005), 317-356. doi: 10.1007/s00028-005-0195-x.

[8]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, University Press, Cambridge, 1992. doi: 10.1017/CBO9780511666223.

[9]

R. Dautray and J.-L. Lions, Mathematical Analysis And Numerical Methods For Science And Technology, Volume 5: Evolution Problems I, Springer Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58090-1.

[10]

W. Grecksch and H. Lisei, Stochastic nonlinear equations of Schrödinger type, Stoch. Anal. Appl., 29 (2011), 631-653. doi: 10.1080/07362994.2011.581091.

[11]

W. Grecksch and C. Tudor, Stochastic Evolution Equations. A Hilbert Space Approach, Akademie Verlag, Berlin, 1995.

[12]

H. M. Itô, Optimal Gaussian solutions of nonlinear stochastic partial differential equations, J. Stat. Phys., 37 (1984), 653-671. doi: 10.1007/BF01010500.

[13]

S. Larsson and V. Thomée, Partial Differential Equations with Numerical Methods, Springer Verlag, Heidelberg, 2003.

[14]

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer Verlag, Berlin-New York, 1971.

[15]

R. Mikulevicius and B. Rozovskii, On martingale problem solutions for stochastic Navier Stokes equations, In: Stochastic Partial Differential Equations and Applications, Edited by G. Da Prato, L. Tubaro. Marcel & Dekker, Inc. New York, Basel, 227 (2002), 405-415.

[16]

C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Mathematics Vol. 1905, Springer Verlag, 2007.

[17]

M. Reed and B. Simao, Methods of Modern Mathematical Physics. IV: Analysis of Operators, Academic Press San Diego, 1978.

[18]

J. J. Rasmussen and K. Rypdal, Blow-up in nonlinear Schroedinger equations-I. A general review, Phys. Scripta., 33 (1986), 481-497. doi: 10.1088/0031-8949/33/6/001.

[19]

B. L. Rozovskii, Stochastic Evolution Systems. Linear Theory and Applications to Nonlinear Filtering, Kluwer Academic Publishers, Dordrecht, 1990. doi: 10.1007/978-94-011-3830-7.

[20]

E. Zeidler, Nonlinear Functional Analysis and Its Applications. I: Fixed-point Theorems, Springer-Verlag, New York, 1986. doi: 10.1007/978-1-4612-4838-5.

[21]

E. Zeidler, Nonlinear Functional Analysis and Its Applications. II/A: Linear Monotone Operators, Springer-Verlag, New York, 1990. doi: 10.1007/978-1-4612-0985-0.

[1]

Gregorio Díaz, Jesús Ildefonso Díaz. Stochastic energy balance climate models with Legendre weighted diffusion and an additive cylindrical Wiener process forcing. Discrete and Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021165

[2]

Jing Cui, Shu-Ming Sun. Nonlinear Schrödinger equations on a finite interval with point dissipation. Mathematical Control and Related Fields, 2019, 9 (2) : 351-384. doi: 10.3934/mcrf.2019017

[3]

Karel Kadlec, Bohdan Maslowski. Ergodic boundary and point control for linear stochastic PDEs driven by a cylindrical Lévy process. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 4039-4055. doi: 10.3934/dcdsb.2020137

[4]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4927-4962. doi: 10.3934/dcdsb.2020320

[5]

Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060

[6]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 3027-3042. doi: 10.3934/dcdss.2021031

[7]

Veronica Felli, Alberto Ferrero, Susanna Terracini. On the behavior at collisions of solutions to Schrödinger equations with many-particle and cylindrical potentials. Discrete and Continuous Dynamical Systems, 2012, 32 (11) : 3895-3956. doi: 10.3934/dcds.2012.32.3895

[8]

Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control and Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401

[9]

Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692

[10]

Noboru Okazawa, Toshiyuki Suzuki, Tomomi Yokota. Energy methods for abstract nonlinear Schrödinger equations. Evolution Equations and Control Theory, 2012, 1 (2) : 337-354. doi: 10.3934/eect.2012.1.337

[11]

Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024

[12]

Alexander Pankov. Nonlinear Schrödinger Equations on Periodic Metric Graphs. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 697-714. doi: 10.3934/dcds.2018030

[13]

Nobu Kishimoto. A remark on norm inflation for nonlinear Schrödinger equations. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1375-1402. doi: 10.3934/cpaa.2019067

[14]

Guoyuan Chen, Youquan Zheng. Concentration phenomenon for fractional nonlinear Schrödinger equations. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2359-2376. doi: 10.3934/cpaa.2014.13.2359

[15]

Yohei Yamazaki. Transverse instability for a system of nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (2) : 565-588. doi: 10.3934/dcdsb.2014.19.565

[16]

Paolo Antonelli, Daniel Marahrens, Christof Sparber. On the Cauchy problem for nonlinear Schrödinger equations with rotation. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 703-715. doi: 10.3934/dcds.2012.32.703

[17]

Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems and Imaging, 2013, 7 (1) : 183-197. doi: 10.3934/ipi.2013.7.183

[18]

Tiziana Cardinali, Paola Rubbioni. Existence theorems for generalized nonlinear quadratic integral equations via a new fixed point result. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 1947-1955. doi: 10.3934/dcdss.2020152

[19]

Boling Guo, Yan Lv, Wei Wang. Schrödinger limit of weakly dissipative stochastic Klein--Gordon--Schrödinger equations and large deviations. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2795-2818. doi: 10.3934/dcds.2014.34.2795

[20]

Qing Xu. Backward stochastic Schrödinger and infinite-dimensional Hamiltonian equations. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5379-5412. doi: 10.3934/dcds.2015.35.5379

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (157)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]