-
Previous Article
Taylor schemes for rough differential equations and fractional diffusions
- DCDS-B Home
- This Issue
-
Next Article
Semilinear stochastic equations with bilinear fractional noise
Linear approximation of nonlinear Schrödinger equations driven by cylindrical Wiener processes
1. | Martin-Luther-University Halle-Wittenberg, Faculty of Natural Sciences II, Institute of Mathematics, 06099 Halle (Saale) |
2. | Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Str. Kogălniceanu nr. 1, RO - 400084 Cluj-Napoca |
References:
[1] |
N. U. Ahmed, Semigroup Theory with Applications to Systems and Control,, Longman Scientific & Technical, (1991).
|
[2] |
N. N. Akhmeddiev, A. Ankiewicz and J. M. Soto-Crespo, Singularities and special soliton solutions of the cubic quintic complex Ginzburg-Landau equation,, Phys. Rev. E, 53 (1996), 1190.
doi: 10.1103/PhysRevE.53.1190. |
[3] |
A. De Bouard and A. Debussche, A stochastic nonlinear Schrödinger equation with multiplicative noise,, Commun. Math. Phys., 205 (1999), 161.
doi: 10.1007/s002200050672. |
[4] |
A. De Bouard and A. Debussche, A semi-discrete scheme for the stochastic nonlinear Schr\"odinger equation,, Numer. Math., 96 (2004), 733.
doi: 10.1007/s00211-003-0494-5. |
[5] |
A. Biswas and S. Konar, Introduction to Non-Kerr Law Optical Solitons,, Chapman and Hall/CRC, (2007).
|
[6] |
Y. Chen, $L^\infty(\mathbb R^n)$ decay for solutions to a class of Schrödinger equations,, Appl. Anal., 39 (1990), 209.
doi: 10.1080/00036819008839982. |
[7] |
A. Debussche and C. Odasso, Ergodicity for a weakly damped stochastic non-linear Schrödinger equation,, J. Evol. Equ., 5 (2005), 317.
doi: 10.1007/s00028-005-0195-x. |
[8] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions,, University Press, (1992).
doi: 10.1017/CBO9780511666223. |
[9] |
R. Dautray and J.-L. Lions, Mathematical Analysis And Numerical Methods For Science And Technology, Volume 5: Evolution Problems I,, Springer Verlag, (1992).
doi: 10.1007/978-3-642-58090-1. |
[10] |
W. Grecksch and H. Lisei, Stochastic nonlinear equations of Schrödinger type,, Stoch. Anal. Appl., 29 (2011), 631.
doi: 10.1080/07362994.2011.581091. |
[11] |
W. Grecksch and C. Tudor, Stochastic Evolution Equations. A Hilbert Space Approach,, Akademie Verlag, (1995).
|
[12] |
H. M. Itô, Optimal Gaussian solutions of nonlinear stochastic partial differential equations,, J. Stat. Phys., 37 (1984), 653.
doi: 10.1007/BF01010500. |
[13] |
S. Larsson and V. Thomée, Partial Differential Equations with Numerical Methods,, Springer Verlag, (2003).
|
[14] |
J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations,, Springer Verlag, (1971).
|
[15] |
R. Mikulevicius and B. Rozovskii, On martingale problem solutions for stochastic Navier Stokes equations,, In: Stochastic Partial Differential Equations and Applications, 227 (2002), 405.
|
[16] |
C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations,, Lecture Notes in Mathematics Vol. 1905, (1905).
|
[17] |
M. Reed and B. Simao, Methods of Modern Mathematical Physics. IV: Analysis of Operators,, Academic Press San Diego, (1978).
|
[18] |
J. J. Rasmussen and K. Rypdal, Blow-up in nonlinear Schroedinger equations-I. A general review,, Phys. Scripta., 33 (1986), 481.
doi: 10.1088/0031-8949/33/6/001. |
[19] |
B. L. Rozovskii, Stochastic Evolution Systems. Linear Theory and Applications to Nonlinear Filtering,, Kluwer Academic Publishers, (1990).
doi: 10.1007/978-94-011-3830-7. |
[20] |
E. Zeidler, Nonlinear Functional Analysis and Its Applications. I: Fixed-point Theorems,, Springer-Verlag, (1986).
doi: 10.1007/978-1-4612-4838-5. |
[21] |
E. Zeidler, Nonlinear Functional Analysis and Its Applications. II/A: Linear Monotone Operators,, Springer-Verlag, (1990).
doi: 10.1007/978-1-4612-0985-0. |
show all references
References:
[1] |
N. U. Ahmed, Semigroup Theory with Applications to Systems and Control,, Longman Scientific & Technical, (1991).
|
[2] |
N. N. Akhmeddiev, A. Ankiewicz and J. M. Soto-Crespo, Singularities and special soliton solutions of the cubic quintic complex Ginzburg-Landau equation,, Phys. Rev. E, 53 (1996), 1190.
doi: 10.1103/PhysRevE.53.1190. |
[3] |
A. De Bouard and A. Debussche, A stochastic nonlinear Schrödinger equation with multiplicative noise,, Commun. Math. Phys., 205 (1999), 161.
doi: 10.1007/s002200050672. |
[4] |
A. De Bouard and A. Debussche, A semi-discrete scheme for the stochastic nonlinear Schr\"odinger equation,, Numer. Math., 96 (2004), 733.
doi: 10.1007/s00211-003-0494-5. |
[5] |
A. Biswas and S. Konar, Introduction to Non-Kerr Law Optical Solitons,, Chapman and Hall/CRC, (2007).
|
[6] |
Y. Chen, $L^\infty(\mathbb R^n)$ decay for solutions to a class of Schrödinger equations,, Appl. Anal., 39 (1990), 209.
doi: 10.1080/00036819008839982. |
[7] |
A. Debussche and C. Odasso, Ergodicity for a weakly damped stochastic non-linear Schrödinger equation,, J. Evol. Equ., 5 (2005), 317.
doi: 10.1007/s00028-005-0195-x. |
[8] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions,, University Press, (1992).
doi: 10.1017/CBO9780511666223. |
[9] |
R. Dautray and J.-L. Lions, Mathematical Analysis And Numerical Methods For Science And Technology, Volume 5: Evolution Problems I,, Springer Verlag, (1992).
doi: 10.1007/978-3-642-58090-1. |
[10] |
W. Grecksch and H. Lisei, Stochastic nonlinear equations of Schrödinger type,, Stoch. Anal. Appl., 29 (2011), 631.
doi: 10.1080/07362994.2011.581091. |
[11] |
W. Grecksch and C. Tudor, Stochastic Evolution Equations. A Hilbert Space Approach,, Akademie Verlag, (1995).
|
[12] |
H. M. Itô, Optimal Gaussian solutions of nonlinear stochastic partial differential equations,, J. Stat. Phys., 37 (1984), 653.
doi: 10.1007/BF01010500. |
[13] |
S. Larsson and V. Thomée, Partial Differential Equations with Numerical Methods,, Springer Verlag, (2003).
|
[14] |
J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations,, Springer Verlag, (1971).
|
[15] |
R. Mikulevicius and B. Rozovskii, On martingale problem solutions for stochastic Navier Stokes equations,, In: Stochastic Partial Differential Equations and Applications, 227 (2002), 405.
|
[16] |
C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations,, Lecture Notes in Mathematics Vol. 1905, (1905).
|
[17] |
M. Reed and B. Simao, Methods of Modern Mathematical Physics. IV: Analysis of Operators,, Academic Press San Diego, (1978).
|
[18] |
J. J. Rasmussen and K. Rypdal, Blow-up in nonlinear Schroedinger equations-I. A general review,, Phys. Scripta., 33 (1986), 481.
doi: 10.1088/0031-8949/33/6/001. |
[19] |
B. L. Rozovskii, Stochastic Evolution Systems. Linear Theory and Applications to Nonlinear Filtering,, Kluwer Academic Publishers, (1990).
doi: 10.1007/978-94-011-3830-7. |
[20] |
E. Zeidler, Nonlinear Functional Analysis and Its Applications. I: Fixed-point Theorems,, Springer-Verlag, (1986).
doi: 10.1007/978-1-4612-4838-5. |
[21] |
E. Zeidler, Nonlinear Functional Analysis and Its Applications. II/A: Linear Monotone Operators,, Springer-Verlag, (1990).
doi: 10.1007/978-1-4612-0985-0. |
[1] |
Jing Cui, Shu-Ming Sun. Nonlinear Schrödinger equations on a finite interval with point dissipation. Mathematical Control & Related Fields, 2019, 9 (2) : 351-384. doi: 10.3934/mcrf.2019017 |
[2] |
Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060 |
[3] |
Veronica Felli, Alberto Ferrero, Susanna Terracini. On the behavior at collisions of solutions to Schrödinger equations with many-particle and cylindrical potentials. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3895-3956. doi: 10.3934/dcds.2012.32.3895 |
[4] |
Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control & Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401 |
[5] |
Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems & Imaging, 2013, 7 (1) : 183-197. doi: 10.3934/ipi.2013.7.183 |
[6] |
Noboru Okazawa, Toshiyuki Suzuki, Tomomi Yokota. Energy methods for abstract nonlinear Schrödinger equations. Evolution Equations & Control Theory, 2012, 1 (2) : 337-354. doi: 10.3934/eect.2012.1.337 |
[7] |
Alexander Pankov. Nonlinear Schrödinger Equations on Periodic Metric Graphs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 697-714. doi: 10.3934/dcds.2018030 |
[8] |
Guoyuan Chen, Youquan Zheng. Concentration phenomenon for fractional nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2359-2376. doi: 10.3934/cpaa.2014.13.2359 |
[9] |
Yohei Yamazaki. Transverse instability for a system of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 565-588. doi: 10.3934/dcdsb.2014.19.565 |
[10] |
Paolo Antonelli, Daniel Marahrens, Christof Sparber. On the Cauchy problem for nonlinear Schrödinger equations with rotation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 703-715. doi: 10.3934/dcds.2012.32.703 |
[11] |
Nobu Kishimoto. A remark on norm inflation for nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1375-1402. doi: 10.3934/cpaa.2019067 |
[12] |
Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692 |
[13] |
Tiziana Cardinali, Paola Rubbioni. Existence theorems for generalized nonlinear quadratic integral equations via a new fixed point result. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020152 |
[14] |
Boling Guo, Yan Lv, Wei Wang. Schrödinger limit of weakly dissipative stochastic Klein--Gordon--Schrödinger equations and large deviations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2795-2818. doi: 10.3934/dcds.2014.34.2795 |
[15] |
Qing Xu. Backward stochastic Schrödinger and infinite-dimensional Hamiltonian equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5379-5412. doi: 10.3934/dcds.2015.35.5379 |
[16] |
Hideo Takaoka. Energy transfer model for the derivative nonlinear Schrödinger equations on the torus. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5819-5841. doi: 10.3934/dcds.2017253 |
[17] |
Thierry Colin, Pierre Fabrie. Semidiscretization in time for nonlinear Schrödinger-waves equations. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 671-690. doi: 10.3934/dcds.1998.4.671 |
[18] |
Juan Belmonte-Beitia, Vladyslav Prytula. Existence of solitary waves in nonlinear equations of Schrödinger type. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1007-1017. doi: 10.3934/dcdss.2011.4.1007 |
[19] |
Shuangjie Peng, Huirong Pi. Spike vector solutions for some coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2205-2227. doi: 10.3934/dcds.2016.36.2205 |
[20] |
Liping Wang, Chunyi Zhao. Infinitely many solutions for nonlinear Schrödinger equations with slow decaying of potential. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1707-1731. doi: 10.3934/dcds.2017071 |
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]