November  2016, 21(9): 3095-3114. doi: 10.3934/dcdsb.2016089

Linear approximation of nonlinear Schrödinger equations driven by cylindrical Wiener processes

1. 

Martin-Luther-University Halle-Wittenberg, Faculty of Natural Sciences II, Institute of Mathematics, 06099 Halle (Saale)

2. 

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Str. Kogălniceanu nr. 1, RO - 400084 Cluj-Napoca

Received  December 2015 Revised  February 2016 Published  October 2016

In this paper the existence and uniqueness of the solution for a stochastic nonlinear Schrödinger equation, which is perturbed by a cylindrical Wiener process is investigated. The existence of the variational solution and of the generalized weak solution are proved by using sequences of successive approximations, which are the solutions of certain linear problems.
Citation: Wilfried Grecksch, Hannelore Lisei. Linear approximation of nonlinear Schrödinger equations driven by cylindrical Wiener processes. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3095-3114. doi: 10.3934/dcdsb.2016089
References:
[1]

N. U. Ahmed, Semigroup Theory with Applications to Systems and Control,, Longman Scientific & Technical, (1991).   Google Scholar

[2]

N. N. Akhmeddiev, A. Ankiewicz and J. M. Soto-Crespo, Singularities and special soliton solutions of the cubic quintic complex Ginzburg-Landau equation,, Phys. Rev. E, 53 (1996), 1190.  doi: 10.1103/PhysRevE.53.1190.  Google Scholar

[3]

A. De Bouard and A. Debussche, A stochastic nonlinear Schrödinger equation with multiplicative noise,, Commun. Math. Phys., 205 (1999), 161.  doi: 10.1007/s002200050672.  Google Scholar

[4]

A. De Bouard and A. Debussche, A semi-discrete scheme for the stochastic nonlinear Schr\"odinger equation,, Numer. Math., 96 (2004), 733.  doi: 10.1007/s00211-003-0494-5.  Google Scholar

[5]

A. Biswas and S. Konar, Introduction to Non-Kerr Law Optical Solitons,, Chapman and Hall/CRC, (2007).   Google Scholar

[6]

Y. Chen, $L^\infty(\mathbb R^n)$ decay for solutions to a class of Schrödinger equations,, Appl. Anal., 39 (1990), 209.  doi: 10.1080/00036819008839982.  Google Scholar

[7]

A. Debussche and C. Odasso, Ergodicity for a weakly damped stochastic non-linear Schrödinger equation,, J. Evol. Equ., 5 (2005), 317.  doi: 10.1007/s00028-005-0195-x.  Google Scholar

[8]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions,, University Press, (1992).  doi: 10.1017/CBO9780511666223.  Google Scholar

[9]

R. Dautray and J.-L. Lions, Mathematical Analysis And Numerical Methods For Science And Technology, Volume 5: Evolution Problems I,, Springer Verlag, (1992).  doi: 10.1007/978-3-642-58090-1.  Google Scholar

[10]

W. Grecksch and H. Lisei, Stochastic nonlinear equations of Schrödinger type,, Stoch. Anal. Appl., 29 (2011), 631.  doi: 10.1080/07362994.2011.581091.  Google Scholar

[11]

W. Grecksch and C. Tudor, Stochastic Evolution Equations. A Hilbert Space Approach,, Akademie Verlag, (1995).   Google Scholar

[12]

H. M. Itô, Optimal Gaussian solutions of nonlinear stochastic partial differential equations,, J. Stat. Phys., 37 (1984), 653.  doi: 10.1007/BF01010500.  Google Scholar

[13]

S. Larsson and V. Thomée, Partial Differential Equations with Numerical Methods,, Springer Verlag, (2003).   Google Scholar

[14]

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations,, Springer Verlag, (1971).   Google Scholar

[15]

R. Mikulevicius and B. Rozovskii, On martingale problem solutions for stochastic Navier Stokes equations,, In: Stochastic Partial Differential Equations and Applications, 227 (2002), 405.   Google Scholar

[16]

C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations,, Lecture Notes in Mathematics Vol. 1905, (1905).   Google Scholar

[17]

M. Reed and B. Simao, Methods of Modern Mathematical Physics. IV: Analysis of Operators,, Academic Press San Diego, (1978).   Google Scholar

[18]

J. J. Rasmussen and K. Rypdal, Blow-up in nonlinear Schroedinger equations-I. A general review,, Phys. Scripta., 33 (1986), 481.  doi: 10.1088/0031-8949/33/6/001.  Google Scholar

[19]

B. L. Rozovskii, Stochastic Evolution Systems. Linear Theory and Applications to Nonlinear Filtering,, Kluwer Academic Publishers, (1990).  doi: 10.1007/978-94-011-3830-7.  Google Scholar

[20]

E. Zeidler, Nonlinear Functional Analysis and Its Applications. I: Fixed-point Theorems,, Springer-Verlag, (1986).  doi: 10.1007/978-1-4612-4838-5.  Google Scholar

[21]

E. Zeidler, Nonlinear Functional Analysis and Its Applications. II/A: Linear Monotone Operators,, Springer-Verlag, (1990).  doi: 10.1007/978-1-4612-0985-0.  Google Scholar

show all references

References:
[1]

N. U. Ahmed, Semigroup Theory with Applications to Systems and Control,, Longman Scientific & Technical, (1991).   Google Scholar

[2]

N. N. Akhmeddiev, A. Ankiewicz and J. M. Soto-Crespo, Singularities and special soliton solutions of the cubic quintic complex Ginzburg-Landau equation,, Phys. Rev. E, 53 (1996), 1190.  doi: 10.1103/PhysRevE.53.1190.  Google Scholar

[3]

A. De Bouard and A. Debussche, A stochastic nonlinear Schrödinger equation with multiplicative noise,, Commun. Math. Phys., 205 (1999), 161.  doi: 10.1007/s002200050672.  Google Scholar

[4]

A. De Bouard and A. Debussche, A semi-discrete scheme for the stochastic nonlinear Schr\"odinger equation,, Numer. Math., 96 (2004), 733.  doi: 10.1007/s00211-003-0494-5.  Google Scholar

[5]

A. Biswas and S. Konar, Introduction to Non-Kerr Law Optical Solitons,, Chapman and Hall/CRC, (2007).   Google Scholar

[6]

Y. Chen, $L^\infty(\mathbb R^n)$ decay for solutions to a class of Schrödinger equations,, Appl. Anal., 39 (1990), 209.  doi: 10.1080/00036819008839982.  Google Scholar

[7]

A. Debussche and C. Odasso, Ergodicity for a weakly damped stochastic non-linear Schrödinger equation,, J. Evol. Equ., 5 (2005), 317.  doi: 10.1007/s00028-005-0195-x.  Google Scholar

[8]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions,, University Press, (1992).  doi: 10.1017/CBO9780511666223.  Google Scholar

[9]

R. Dautray and J.-L. Lions, Mathematical Analysis And Numerical Methods For Science And Technology, Volume 5: Evolution Problems I,, Springer Verlag, (1992).  doi: 10.1007/978-3-642-58090-1.  Google Scholar

[10]

W. Grecksch and H. Lisei, Stochastic nonlinear equations of Schrödinger type,, Stoch. Anal. Appl., 29 (2011), 631.  doi: 10.1080/07362994.2011.581091.  Google Scholar

[11]

W. Grecksch and C. Tudor, Stochastic Evolution Equations. A Hilbert Space Approach,, Akademie Verlag, (1995).   Google Scholar

[12]

H. M. Itô, Optimal Gaussian solutions of nonlinear stochastic partial differential equations,, J. Stat. Phys., 37 (1984), 653.  doi: 10.1007/BF01010500.  Google Scholar

[13]

S. Larsson and V. Thomée, Partial Differential Equations with Numerical Methods,, Springer Verlag, (2003).   Google Scholar

[14]

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations,, Springer Verlag, (1971).   Google Scholar

[15]

R. Mikulevicius and B. Rozovskii, On martingale problem solutions for stochastic Navier Stokes equations,, In: Stochastic Partial Differential Equations and Applications, 227 (2002), 405.   Google Scholar

[16]

C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations,, Lecture Notes in Mathematics Vol. 1905, (1905).   Google Scholar

[17]

M. Reed and B. Simao, Methods of Modern Mathematical Physics. IV: Analysis of Operators,, Academic Press San Diego, (1978).   Google Scholar

[18]

J. J. Rasmussen and K. Rypdal, Blow-up in nonlinear Schroedinger equations-I. A general review,, Phys. Scripta., 33 (1986), 481.  doi: 10.1088/0031-8949/33/6/001.  Google Scholar

[19]

B. L. Rozovskii, Stochastic Evolution Systems. Linear Theory and Applications to Nonlinear Filtering,, Kluwer Academic Publishers, (1990).  doi: 10.1007/978-94-011-3830-7.  Google Scholar

[20]

E. Zeidler, Nonlinear Functional Analysis and Its Applications. I: Fixed-point Theorems,, Springer-Verlag, (1986).  doi: 10.1007/978-1-4612-4838-5.  Google Scholar

[21]

E. Zeidler, Nonlinear Functional Analysis and Its Applications. II/A: Linear Monotone Operators,, Springer-Verlag, (1990).  doi: 10.1007/978-1-4612-0985-0.  Google Scholar

[1]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[2]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[3]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[4]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[5]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[6]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[7]

Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328

[8]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[9]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[10]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[11]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, 2021, 20 (2) : 867-884. doi: 10.3934/cpaa.2020294

[12]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[13]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[14]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[15]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[16]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[17]

Masaru Hamano, Satoshi Masaki. A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1415-1447. doi: 10.3934/dcds.2020323

[18]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 651-680. doi: 10.3934/cpaa.2020284

[19]

Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger Equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020392

[20]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]