November  2016, 21(9): 3115-3162. doi: 10.3934/dcdsb.2016090

Taylor schemes for rough differential equations and fractional diffusions

1. 

Department of Mathematics, The University of Kansas, Lawrence, Kansas, 66045, United States, United States, United States

Received  October 2015 Revised  March 2016 Published  October 2016

In this paper, we study two variations of the time discrete Taylor schemes for rough differential equations and for stochastic differential equations driven by fractional Brownian motions. One is the incomplete Taylor scheme which excludes some terms of an Taylor scheme in its recursive computation so as to reduce the computation time. The other one is to add some deterministic terms to an incomplete Taylor scheme to improve the mean rate of convergence. Almost sure rate of convergence and $L_p$-rate of convergence are obtained for the incomplete Taylor schemes. Almost sure rate is expressed in terms of the Hölder exponents of the driving signals and the $L_p$-rate is expressed by the Hurst parameters. Both the almost sure and the $L_{p}$-convergence rates can be computed explicitly in terms of the parameters and the number of terms included in the incomplete scheme. In this way we can design the best incomplete schemes for the almost sure or the $L_p$-convergence. As in the smooth case, general Taylor schemes are always complicated to deal with. The incomplete Taylor scheme is even more sophisticated to analyze. A new feature of our approach is the explicit expression of the error functions which will be easier to study. Estimates for multiple integrals and formulas for the iterated vector fields are obtained to analyze the error functions and then to obtain the rates of convergence.
Citation: Yaozhong Hu, Yanghui Liu, David Nualart. Taylor schemes for rough differential equations and fractional diffusions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3115-3162. doi: 10.3934/dcdsb.2016090
References:
[1]

F. Baudoin and X. Zhang, Taylor expansion for the solution of a stochastic differential equation driven by fractional Brownian motions,, Electron. J. Probab., 17 (2012), 1.  doi: 10.1214/EJP.v17-2136.  Google Scholar

[2]

Q. Feng and X. Zhang, Taylor expansions and Castell estimates for solutions of stochastic differential equations driven by rough paths, preprint,, , ().   Google Scholar

[3]

P. K. Friz and N. Victoir, Multidimentional Stochastic Processes as Rough Paths, Theory and Applications,, vol. 120 of Cambridge studies in advanced mathematics, (2010).  doi: 10.1017/CBO9780511845079.  Google Scholar

[4]

M. Gradinaru and I. Nourdin, Milstein's type schemes for fractional SDEs,, Ann. Inst. Henri Poincaré Probab. Stat., 45 (2009), 1085.  doi: 10.1214/08-AIHP196.  Google Scholar

[5]

Y. Hu, Strong and weak order of time discretization schemes of stochastic differential equations,, Séminaire de Probabilités XXX, 1626 (1996), 218.  doi: 10.1007/BFb0094650.  Google Scholar

[6]

Y. Hu, Multiple integrals and expansion of solutions of differential equations driven by rough paths and by fractional Brownian motions,, Stochastics, 85 (2013), 859.  doi: 10.1080/17442508.2012.673615.  Google Scholar

[7]

Y. Hu, Y. Liu and D. Nualart, Rate of convergence and asymptotic error distribution of Euler approximation schemes for fractional diffusions,, Ann. Appl. Probab., 26 (2016), 1147.  doi: 10.1214/15-AAP1114.  Google Scholar

[8]

Y. Hu and B. Øksendal, Fractional white noise calculus and applications to finance,, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 6 (2003), 1.  doi: 10.1142/S0219025703001110.  Google Scholar

[9]

S. Janson, Gaussian Hilbert Spaces,, Cambridge University Press, (1997).  doi: 10.1017/CBO9780511526169.  Google Scholar

[10]

P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations,, Springer, (1992).  doi: 10.1007/978-3-662-12616-5.  Google Scholar

[11]

T. Lyons, Differential equations driven by rough signals. I. An extension of an inequality of L. C. Young,, Math. Res. Lett., 1 (1994), 451.  doi: 10.4310/MRL.1994.v1.n4.a5.  Google Scholar

[12]

T. Lyons, Differential equations driven by rough signals,, Rev. Mat. Iberoamericana, 14 (1998), 215.  doi: 10.4171/RMI/240.  Google Scholar

[13]

Y. Mishura, Stochastic Calculus for Fractional Brownian Motion and Related Processes,, Springer-Verlag, (2008).  doi: 10.1007/978-3-540-75873-0.  Google Scholar

[14]

A. Neuenkirch and I. Nourdin, Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion,, J. Theoret. Probab., 20 (2007), 871.  doi: 10.1007/s10959-007-0083-0.  Google Scholar

[15]

D. Nualart and A. Rascanu, Differential equations driven by fractional Brownian motion,, Collect. Math., 53 (2002), 55.   Google Scholar

[16]

C. Reutenauer, Free Lie Algebra,, vol. 7 of London Mathematical Society Monographs, (1993).   Google Scholar

[17]

M. Zähle, Integration with respect to fractal functions and stochastic calculus. I.,, Probab. Theory Related Fields, 111 (1998), 333.  doi: 10.1007/s004400050171.  Google Scholar

show all references

References:
[1]

F. Baudoin and X. Zhang, Taylor expansion for the solution of a stochastic differential equation driven by fractional Brownian motions,, Electron. J. Probab., 17 (2012), 1.  doi: 10.1214/EJP.v17-2136.  Google Scholar

[2]

Q. Feng and X. Zhang, Taylor expansions and Castell estimates for solutions of stochastic differential equations driven by rough paths, preprint,, , ().   Google Scholar

[3]

P. K. Friz and N. Victoir, Multidimentional Stochastic Processes as Rough Paths, Theory and Applications,, vol. 120 of Cambridge studies in advanced mathematics, (2010).  doi: 10.1017/CBO9780511845079.  Google Scholar

[4]

M. Gradinaru and I. Nourdin, Milstein's type schemes for fractional SDEs,, Ann. Inst. Henri Poincaré Probab. Stat., 45 (2009), 1085.  doi: 10.1214/08-AIHP196.  Google Scholar

[5]

Y. Hu, Strong and weak order of time discretization schemes of stochastic differential equations,, Séminaire de Probabilités XXX, 1626 (1996), 218.  doi: 10.1007/BFb0094650.  Google Scholar

[6]

Y. Hu, Multiple integrals and expansion of solutions of differential equations driven by rough paths and by fractional Brownian motions,, Stochastics, 85 (2013), 859.  doi: 10.1080/17442508.2012.673615.  Google Scholar

[7]

Y. Hu, Y. Liu and D. Nualart, Rate of convergence and asymptotic error distribution of Euler approximation schemes for fractional diffusions,, Ann. Appl. Probab., 26 (2016), 1147.  doi: 10.1214/15-AAP1114.  Google Scholar

[8]

Y. Hu and B. Øksendal, Fractional white noise calculus and applications to finance,, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 6 (2003), 1.  doi: 10.1142/S0219025703001110.  Google Scholar

[9]

S. Janson, Gaussian Hilbert Spaces,, Cambridge University Press, (1997).  doi: 10.1017/CBO9780511526169.  Google Scholar

[10]

P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations,, Springer, (1992).  doi: 10.1007/978-3-662-12616-5.  Google Scholar

[11]

T. Lyons, Differential equations driven by rough signals. I. An extension of an inequality of L. C. Young,, Math. Res. Lett., 1 (1994), 451.  doi: 10.4310/MRL.1994.v1.n4.a5.  Google Scholar

[12]

T. Lyons, Differential equations driven by rough signals,, Rev. Mat. Iberoamericana, 14 (1998), 215.  doi: 10.4171/RMI/240.  Google Scholar

[13]

Y. Mishura, Stochastic Calculus for Fractional Brownian Motion and Related Processes,, Springer-Verlag, (2008).  doi: 10.1007/978-3-540-75873-0.  Google Scholar

[14]

A. Neuenkirch and I. Nourdin, Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion,, J. Theoret. Probab., 20 (2007), 871.  doi: 10.1007/s10959-007-0083-0.  Google Scholar

[15]

D. Nualart and A. Rascanu, Differential equations driven by fractional Brownian motion,, Collect. Math., 53 (2002), 55.   Google Scholar

[16]

C. Reutenauer, Free Lie Algebra,, vol. 7 of London Mathematical Society Monographs, (1993).   Google Scholar

[17]

M. Zähle, Integration with respect to fractal functions and stochastic calculus. I.,, Probab. Theory Related Fields, 111 (1998), 333.  doi: 10.1007/s004400050171.  Google Scholar

[1]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[2]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[3]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[4]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[5]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[6]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

[7]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[8]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[9]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[10]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[11]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[12]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[13]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[14]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[15]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[16]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[17]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[18]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[19]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[20]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (71)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]