November  2016, 21(9): 3163-3174. doi: 10.3934/dcdsb.2016091

Approximation for random stable manifolds under multiplicative correlated noises

1. 

School of Mathematics and Statistics, Huazhong University of Sciences and Technology, Wuhan 430074, China, China

2. 

Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616

Received  December 2015 Revised  February 2016 Published  October 2016

The usual Wong-Zakai approximation is about simulating individual solutions of stochastic differential equations(SDEs). From the perspective of dynamical systems, it is also interesting to approximate random invariant manifolds which are geometric objects useful for understanding how complex dynamics evolve under stochastic influences. We study a Wong-Zakai type of approximation for the random stable manifold of a stochastic evolutionary equation with multiplicative correlated noise. Based on the convergence of solutions on the invariant manifold, we approximate the random stable manifold by the invariant manifolds of a family of perturbed stochastic systems with smooth correlated noise (i.e., an integrated Ornstein-Uhlenbeck process). The convergence of this approximation is established.
Citation: Tao Jiang, Xianming Liu, Jinqiao Duan. Approximation for random stable manifolds under multiplicative correlated noises. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3163-3174. doi: 10.3934/dcdsb.2016091
References:
[1]

P. Acquistapace and B. Terreni, An approach to Ito linear equations in Hilbert spaces by approximation of white noise with coloured noise, Stochastic Anal. Appl., 2 (1984), 131-186. doi: 10.1080/07362998408809031.

[2]

L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.

[3]

V. Bally, A. Millet and M. Sanz-Sole, Approximation and support theorem in Holder norm for parabolic stochastic partial differential equations, Ann. Probab., 23 (1995), 178-222. doi: 10.1214/aop/1176988383.

[4]

P. Boxler, Stochastische Zentrumsmannigfaltigkeiten, Ph.D.thesis, Institut fiir Dynamische Systeme, Universitat Bremen, 1988.

[5]

Z. Brzeźniak and F. Flandoli, Almost sure approximation of Wong-Zakai type for stochastic partial differential equations, Stochastic Process. Appl., 55 (1995), 329-358. doi: 10.1016/0304-4149(94)00037-T.

[6]

Z. Brzeźniak, M. Capinski and F. Flandoli, A convergence result for stochastic partial differential equations, Stochastics, 24 (1988), 423-445. doi: 10.1080/17442508808833526.

[7]

T. Caraballo, J. Duan, K. Lu and B. Schmalfuss, Invariant manifolds for random and stochastic partial differential equations, Adv. Nonlinear Stud., 10 (2010), 23-52.

[8]

J. Duan, K. Lu and B. Schmalfuss, Invariant manifolds for stochastic partial differential equations, Ann. Probab., 31 (2003), 2109-2135. doi: 10.1214/aop/1068646380.

[9]

J. Duan, K. Lu and B. Schmalfuss, Smooth stable and unstable manifolds for stochastic evolutionary equations, J. Dynam. Differential Equations, 16 (2004), 949-972.

[10]

J. Duan and W. Wang, Effective Dynamics of Stochastic Partial Differential Equations, Elsevier, Amsterdam, 2014.

[11]

I. Gyöngy, On the approximations of stochastic partial differential equations I, Stochastics, 25 (1988), 59-85. doi: 10.1080/17442508808833533.

[12]

I. Gyöngy and A. Shmatkov, Rate of convergence of Wong-Zakai approximations for stochastic partial differential equations, Appl. Math. Optim., 54 (2006), 315-341. doi: 10.1007/s00245-006-0873-2.

[13]

I. Gyöngy, D. Nualart and M. Sanz-Sole, Approximations and support theorems in modulus spaces, Probab. Theory Related Fields, 101 (1995), 495-509.

[14]

I. Gyöngy and T. Pröhle, On the approximation of stochastic partial differential equations and on Stroock-Varadhan support theorem, Computers Math and Applic., 19 (1990), 65-70.

[15]

M. Hairer and E. Pardoux, A Wong-Zakai theorem for stochastic PDEs, J. Math. Soc. Japan., 67 (2015), 1551-1604. doi: 10.2969/jmsj/06741551.

[16]

W. Horsthemke and R. Lefever, Noise Induced Transitions. Theory and Applications in Physics, Chemistry, and Biology, Springer Berlin Heidelberg, 1984.

[17]

F. Konecny, On Wong-Zakai approximation of stochastic differential equations, J. Multivariate Anal., 13 (1983), 605-611. doi: 10.1016/0047-259X(83)90043-X.

[18]

H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge University Press, Cambridge, 1990.

[19]

Z. Lian and K. Lu, Lyapunov exponents and invariant manifolds for random dynamical systems in a banach space, Mem. Amer. Math. Soc., 206 (2010), vi+106 pp.

[20]

A. Millet and M. Sanz-Sole, The support of the solution to a hyperbolic SPDE, Probab. Theory Related Fields, 98 (1994), 361-387. doi: 10.1007/BF01192259.

[21]

A. Millet and M. Sanz-Sole, Approximation and support theorem for a wave equation in two space dimensions, Bernoulli, 6 (2000), 887-915. doi: 10.2307/3318761.

[22]

S.-E. A. Mohammed and M. K. R. Scheutzow, The stable manifold theorem for stochastic differential equations, Ann. Probab., 27 (1999), 615-652. doi: 10.1214/aop/1022677380.

[23]

S.-E. A. Mohammed, T. Zhang and H. Zhao, The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations, Mem. Amer. Math. Soc., 196 (2008), vi+105 pp. doi: 10.1090/memo/0917.

[24]

S. Nakao and Y. Yamato, Approximation theorem on stochastic differential equations, Proc. of Intern. Symp. SDE Kyoto, (1978), 283-296.

[25]

R. Pettersson, Wong-Zakai approximations for reflecting stochastic differential equations, Stochastic Anal. Appl., 17 (1999), 609-617. doi: 10.1080/07362999908809624.

[26]

P. Protter, Approximation of solutions of stochastic differential equations driven by semimartingales, Ann. Probab., 13 (1985), 716-743. doi: 10.1214/aop/1176992905.

[27]

D. W. Stroock and S. R. S. Varadhan, On the support of diffusion processes with applications to the strong maximum principle, Proceedings 6th Berkeley Symposium Math. Statist. Probab., University of California Press, Berkeley , 3 (1972), 333-359.

[28]

X. Sun, J. Duan and X. Li, An impact of noise on invariant manifolds in nonlinear dynamical system, J. Math. Phys., 51 (2010), 042702, 12pp. doi: 10.1063/1.3371010.

[29]

G. Tessitore and J. Zabczyk, Wong-Zakai approximation of stochastic evolution equations, J. Evol. Equ., 6 (2006), 621-655. doi: 10.1007/s00028-006-0280-9.

[30]

E. Wong and M. Zakai, On the relation between ordinary and stochastic differential equations, Internat. J. Engrg. Sci., 3 (1965), 213-229. doi: 10.1016/0020-7225(65)90045-5.

[31]

E. Wong and M. Zakai, On the convergence of ordinary integrals to stochastic integrals, Ann. Math. Statist., 36 (1965), 1560-1564. doi: 10.1214/aoms/1177699916.

show all references

References:
[1]

P. Acquistapace and B. Terreni, An approach to Ito linear equations in Hilbert spaces by approximation of white noise with coloured noise, Stochastic Anal. Appl., 2 (1984), 131-186. doi: 10.1080/07362998408809031.

[2]

L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.

[3]

V. Bally, A. Millet and M. Sanz-Sole, Approximation and support theorem in Holder norm for parabolic stochastic partial differential equations, Ann. Probab., 23 (1995), 178-222. doi: 10.1214/aop/1176988383.

[4]

P. Boxler, Stochastische Zentrumsmannigfaltigkeiten, Ph.D.thesis, Institut fiir Dynamische Systeme, Universitat Bremen, 1988.

[5]

Z. Brzeźniak and F. Flandoli, Almost sure approximation of Wong-Zakai type for stochastic partial differential equations, Stochastic Process. Appl., 55 (1995), 329-358. doi: 10.1016/0304-4149(94)00037-T.

[6]

Z. Brzeźniak, M. Capinski and F. Flandoli, A convergence result for stochastic partial differential equations, Stochastics, 24 (1988), 423-445. doi: 10.1080/17442508808833526.

[7]

T. Caraballo, J. Duan, K. Lu and B. Schmalfuss, Invariant manifolds for random and stochastic partial differential equations, Adv. Nonlinear Stud., 10 (2010), 23-52.

[8]

J. Duan, K. Lu and B. Schmalfuss, Invariant manifolds for stochastic partial differential equations, Ann. Probab., 31 (2003), 2109-2135. doi: 10.1214/aop/1068646380.

[9]

J. Duan, K. Lu and B. Schmalfuss, Smooth stable and unstable manifolds for stochastic evolutionary equations, J. Dynam. Differential Equations, 16 (2004), 949-972.

[10]

J. Duan and W. Wang, Effective Dynamics of Stochastic Partial Differential Equations, Elsevier, Amsterdam, 2014.

[11]

I. Gyöngy, On the approximations of stochastic partial differential equations I, Stochastics, 25 (1988), 59-85. doi: 10.1080/17442508808833533.

[12]

I. Gyöngy and A. Shmatkov, Rate of convergence of Wong-Zakai approximations for stochastic partial differential equations, Appl. Math. Optim., 54 (2006), 315-341. doi: 10.1007/s00245-006-0873-2.

[13]

I. Gyöngy, D. Nualart and M. Sanz-Sole, Approximations and support theorems in modulus spaces, Probab. Theory Related Fields, 101 (1995), 495-509.

[14]

I. Gyöngy and T. Pröhle, On the approximation of stochastic partial differential equations and on Stroock-Varadhan support theorem, Computers Math and Applic., 19 (1990), 65-70.

[15]

M. Hairer and E. Pardoux, A Wong-Zakai theorem for stochastic PDEs, J. Math. Soc. Japan., 67 (2015), 1551-1604. doi: 10.2969/jmsj/06741551.

[16]

W. Horsthemke and R. Lefever, Noise Induced Transitions. Theory and Applications in Physics, Chemistry, and Biology, Springer Berlin Heidelberg, 1984.

[17]

F. Konecny, On Wong-Zakai approximation of stochastic differential equations, J. Multivariate Anal., 13 (1983), 605-611. doi: 10.1016/0047-259X(83)90043-X.

[18]

H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge University Press, Cambridge, 1990.

[19]

Z. Lian and K. Lu, Lyapunov exponents and invariant manifolds for random dynamical systems in a banach space, Mem. Amer. Math. Soc., 206 (2010), vi+106 pp.

[20]

A. Millet and M. Sanz-Sole, The support of the solution to a hyperbolic SPDE, Probab. Theory Related Fields, 98 (1994), 361-387. doi: 10.1007/BF01192259.

[21]

A. Millet and M. Sanz-Sole, Approximation and support theorem for a wave equation in two space dimensions, Bernoulli, 6 (2000), 887-915. doi: 10.2307/3318761.

[22]

S.-E. A. Mohammed and M. K. R. Scheutzow, The stable manifold theorem for stochastic differential equations, Ann. Probab., 27 (1999), 615-652. doi: 10.1214/aop/1022677380.

[23]

S.-E. A. Mohammed, T. Zhang and H. Zhao, The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations, Mem. Amer. Math. Soc., 196 (2008), vi+105 pp. doi: 10.1090/memo/0917.

[24]

S. Nakao and Y. Yamato, Approximation theorem on stochastic differential equations, Proc. of Intern. Symp. SDE Kyoto, (1978), 283-296.

[25]

R. Pettersson, Wong-Zakai approximations for reflecting stochastic differential equations, Stochastic Anal. Appl., 17 (1999), 609-617. doi: 10.1080/07362999908809624.

[26]

P. Protter, Approximation of solutions of stochastic differential equations driven by semimartingales, Ann. Probab., 13 (1985), 716-743. doi: 10.1214/aop/1176992905.

[27]

D. W. Stroock and S. R. S. Varadhan, On the support of diffusion processes with applications to the strong maximum principle, Proceedings 6th Berkeley Symposium Math. Statist. Probab., University of California Press, Berkeley , 3 (1972), 333-359.

[28]

X. Sun, J. Duan and X. Li, An impact of noise on invariant manifolds in nonlinear dynamical system, J. Math. Phys., 51 (2010), 042702, 12pp. doi: 10.1063/1.3371010.

[29]

G. Tessitore and J. Zabczyk, Wong-Zakai approximation of stochastic evolution equations, J. Evol. Equ., 6 (2006), 621-655. doi: 10.1007/s00028-006-0280-9.

[30]

E. Wong and M. Zakai, On the relation between ordinary and stochastic differential equations, Internat. J. Engrg. Sci., 3 (1965), 213-229. doi: 10.1016/0020-7225(65)90045-5.

[31]

E. Wong and M. Zakai, On the convergence of ordinary integrals to stochastic integrals, Ann. Math. Statist., 36 (1965), 1560-1564. doi: 10.1214/aoms/1177699916.

[1]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[2]

Samuel Herrmann, Nicolas Massin. Exit problem for Ornstein-Uhlenbeck processes: A random walk approach. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3199-3215. doi: 10.3934/dcdsb.2020058

[3]

Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207

[4]

Dingshi Li, Xiaohu Wang, Junyilang Zhao. Limiting dynamical behavior of random fractional FitzHugh-Nagumo systems driven by a Wong-Zakai approximation process. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2751-2776. doi: 10.3934/cpaa.2020120

[5]

Anhui Gu, Kening Lu, Bixiang Wang. Asymptotic behavior of random Navier-Stokes equations driven by Wong-Zakai approximations. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 185-218. doi: 10.3934/dcds.2019008

[6]

Anhui Gu. Asymptotic behavior of random lattice dynamical systems and their Wong-Zakai approximations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5737-5767. doi: 10.3934/dcdsb.2019104

[7]

Dandan Ma, Ji Shu, Ling Qin. Wong-Zakai approximations and asymptotic behavior of stochastic Ginzburg-Landau equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4335-4359. doi: 10.3934/dcdsb.2020100

[8]

Kai Liu. Quadratic control problem of neutral Ornstein-Uhlenbeck processes with control delays. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1651-1661. doi: 10.3934/dcdsb.2013.18.1651

[9]

Yiju Chen, Xiaohu Wang, Kenan Wu. Wong-Zakai approximations and pathwise dynamics of stochastic fractional lattice systems. Communications on Pure and Applied Analysis, 2022, 21 (8) : 2529-2560. doi: 10.3934/cpaa.2022059

[10]

Tomasz Komorowski, Łukasz Stȩpień. Kinetic limit for a harmonic chain with a conservative Ornstein-Uhlenbeck stochastic perturbation. Kinetic and Related Models, 2018, 11 (2) : 239-278. doi: 10.3934/krm.2018013

[11]

Guifen Liu, Wenqiang Zhao. Regularity of Wong-Zakai approximation for non-autonomous stochastic quasi-linear parabolic equation on $ {\mathbb{R}}^N $. Electronic Research Archive, 2021, 29 (6) : 3655-3686. doi: 10.3934/era.2021056

[12]

Yiju Chen, Xiaohu Wang, Kenan Wu. Wong-Zakai approximations of stochastic lattice systems driven by long-range interactions and multiplicative white noises. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022113

[13]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure and Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[14]

Annalisa Cesaroni, Matteo Novaga, Enrico Valdinoci. A symmetry result for the Ornstein-Uhlenbeck operator. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2451-2467. doi: 10.3934/dcds.2014.34.2451

[15]

Yanfeng Guo, Jinqiao Duan, Donglong Li. Approximation of random invariant manifolds for a stochastic Swift-Hohenberg equation. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1701-1715. doi: 10.3934/dcdss.2016071

[16]

Thi Tuyen Nguyen. Large time behavior of solutions of local and nonlocal nondegenerate Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator. Communications on Pure and Applied Analysis, 2019, 18 (3) : 999-1021. doi: 10.3934/cpaa.2019049

[17]

Jun Shen, Kening Lu, Bixiang Wang. Invariant manifolds and foliations for random differential equations driven by colored noise. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6201-6246. doi: 10.3934/dcds.2020276

[18]

Filomena Feo, Pablo Raúl Stinga, Bruno Volzone. The fractional nonlocal Ornstein-Uhlenbeck equation, Gaussian symmetrization and regularity. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3269-3298. doi: 10.3934/dcds.2018142

[19]

Mondher Damak, Brice Franke, Nejib Yaakoubi. Accelerating planar Ornstein-Uhlenbeck diffusion with suitable drift. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4093-4112. doi: 10.3934/dcds.2020173

[20]

Tomasz Komorowski, Lenya Ryzhik. Fluctuations of solutions to Wigner equation with an Ornstein-Uhlenbeck potential. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 871-914. doi: 10.3934/dcdsb.2012.17.871

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (136)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]