November  2016, 21(9): 3191-3207. doi: 10.3934/dcdsb.2016093

Takens theorem for random dynamical systems

1. 

School of Mathematics, Peking University, Beijing 100871

2. 

Department of Mathematics, Brigham Young University, Provo, Utah 84602

Received  October 2015 Revised  January 2016 Published  October 2016

In this paper, we study random dynamical systems with partial hyperbolic fixed points and prove the smooth conjugacy theorems of Takens type based on their Lyapunov exponents.
Citation: Weigu Li, Kening Lu. Takens theorem for random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3191-3207. doi: 10.3934/dcdsb.2016093
References:
[1]

L. Arnold, Random Dynamical Systems,, Springer, (1998).   Google Scholar

[2]

L. Arnold and K. Xu, Normal forms for random differential equations,, Journal of Differential Equations, 116 (1995), 484.  doi: 10.1006/jdeq.1995.1045.  Google Scholar

[3]

V. I. Arnold, Geometric Methods in the Theory of Ordinary Differential. Equations,, Springer-Verlag, (1983).   Google Scholar

[4]

V. I. Arnold, Small denominators I. One the mapping of a circle into itself,, Izv. Akad. Nauk. Math., 25 (1961), 21.   Google Scholar

[5]

A. Banyaga, R. de la Llave and C. E. Wayne, Cohomology equations near hyperbolic points and geometric versions of Sternberg linearization theorem,, J. Geom. Anal., 6 (1996), 613.  doi: 10.1007/BF02921624.  Google Scholar

[6]

G. R. Beliskii, Functional equations and the conjugacy of diffeomorphism of finite smoothness class,, Functional Anal. Appl., 7 (1973), 17.   Google Scholar

[7]

G. R. Beliskii, Equivalence and normal forms of germs of smooth mappings,, Russian Math. Surveys, 33 (1978), 95.   Google Scholar

[8]

A. D. Brjuno, Analytic form of differential equations I, II,, Trans. Mosc. Math. Soc., 25 (1971), 119.   Google Scholar

[9]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions,, LNM 580. Springer-Verlag, (1977).   Google Scholar

[10]

K. T. Chen, Equivalence and decomposition of vector fields about an elementary critical point,, Amer.J. Math., 85 (1963), 693.  doi: 10.2307/2373115.  Google Scholar

[11]

S.-N. Chow, K. Lu and Y.-Q. Shen, Normal form and linearization for quasiperiodic systems,, Trans. Amer. Math. Soc., 331 (1992), 361.  doi: 10.1090/S0002-9947-1992-1076612-1.  Google Scholar

[12]

N. D. Cong, Topological Dynamics of Random Dynamical Systems,, Orford Mathematical Monographs, (1997).   Google Scholar

[13]

M. ElBialy, Linearization of vector fields near resonant hyperbolic rest points,, J. Differential Equations, 118 (1995), 336.  doi: 10.1006/jdeq.1995.1076.  Google Scholar

[14]

D. M. Grobman, Topological classification of the neighborhood of a singular point in $n$-dimensional space,, Mat. Sb., 56 (1962), 77.   Google Scholar

[15]

P. Guo and J. Shen, Smooth invariant manifolds for random dynamical systems,, Rocky Mountain Journal of Mathematics, ().   Google Scholar

[16]

P. Hartman, On local homeomorphisms of Euclidean spaces,, Bol. Soc. Mat. Mexican, 5 (1960), 220.   Google Scholar

[17]

P. Hartman, On the local linearization of differential equations,, Proc. Amer. Math. Soc., 14 (1963), 568.  doi: 10.1090/S0002-9939-1963-0152718-3.  Google Scholar

[18]

Yu. S. Ilyashenko and W. Li, Nonlocal Bifurcations. Mathematical Surveys and Monographs,, American Mathematical Society, (1999).   Google Scholar

[19]

Yu. S. Ilyashenko and S. Yu. Yakovenko, Finitely smooth normal forms of local families of diffeomorphisms and vector fields, (Russian), Uspekhi Mat. Nauk, 46 (1991), 3.  doi: 10.1070/RM1991v046n01ABEH002733.  Google Scholar

[20]

Y. Kifer, Random Perturbations of Dynamical Systems,, Progress in Probability and Statistics, (1988).  doi: 10.1007/978-1-4615-8181-9.  Google Scholar

[21]

W. Li and K. Lu, Poincaré theorems for random dynamical systems,, Ergodic Theory Dynam. Systems, 25 (2005), 1221.  doi: 10.1017/S014338570400094X.  Google Scholar

[22]

W. Li and K. Lu, Sternberg theorems for random dynamical systems,, Comm. Pure Appl. Math., 58 (2005), 941.  doi: 10.1002/cpa.20083.  Google Scholar

[23]

W. Li and K. Lu, A Siegel theorem for random dynamical systems,, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 635.  doi: 10.3934/dcdsb.2008.9.635.  Google Scholar

[24]

P.-D. Liu, Random perturbations of Axiom A basic sets,, J. Statist. Phys., 90 (1998), 467.  doi: 10.1023/A:1023280407906.  Google Scholar

[25]

P.-D. Liu, Dynamics of Random perturbations: Smooth ergodic theory,, Ergod. Th. & Dynam. Sys., 21 (2001), 1279.  doi: 10.1017/S0143385701001614.  Google Scholar

[26]

P. Liu and M. Qian, Smooth Ergodic Theory of Random Dynamical Systems,, Lecture Notes in Mathematics, (1606).  doi: 10.1007/BFb0094308.  Google Scholar

[27]

K. R. Meyer, The implicit function theorem and analytic differential equations,, Lect. Notes in Math., 468 (1975), 191.   Google Scholar

[28]

J. K. Moser, A rapidly covergent iteration method and nonlinear differential equations II,, Ann. Scuo. Norm. Sup. Pisa., 20 (1966), 499.   Google Scholar

[29]

E. Nelson, Topics in Dynamics I. Flows,, Princeton University Press, (1969).   Google Scholar

[30]

M. Nagumo and K. Isé, On the normal forms of differential equations in the neighborhood of an equilibrium point,, Osaka Math. J., 9 (1957), 221.   Google Scholar

[31]

C. Pugh, On a theorem of P. Hartman,, Amer. J. Math., 91 (1969), 363.  doi: 10.2307/2373513.  Google Scholar

[32]

F. Takens, Partially hyperbolic fixed points,, Topology, 10 (1971), 133.  doi: 10.1016/0040-9383(71)90035-8.  Google Scholar

[33]

K. Palmer, Qualitative behavior of a system of ODE near an equilibrium point, A generalization of the Hartman- Grobman Theorem,, Technical Report, (1980).   Google Scholar

[34]

R. Pérez-Marco, Linearization of holomorphic germs with resonant linear part,, preprint., ().   Google Scholar

[35]

H. Poincaré, Sur le probléme des trois corps et les équations de la dynamique,, Acta Math., 13 (1890), 1.   Google Scholar

[36]

D. Ruelle, Random Smooth Dynamical Systems,, Lecture Notes in Rutgers, (1996).   Google Scholar

[37]

G. R. Sell, Smooth linearization near a fixed point,, Amer. J. Math., 107 (1985), 1035.  doi: 10.2307/2374346.  Google Scholar

[38]

G. R. Sell, Obstacles to linearization,, Diff. Urav., 20 (1984), 446.   Google Scholar

[39]

C. L. Siegel, Iteration of analytic functions,, Ann. Math., 43 (1942), 607.  doi: 10.2307/1968952.  Google Scholar

[40]

C. L. Siegel, Ober die Normalform analytischer Differentialgleichungen in der Nahe einer Gleichgewichtslosung,, Nachr . Akad. Wiss. Gottingen, 1952 (1952), 21.   Google Scholar

[41]

S. Sternberg, On the behavior of invariant curves near a hyberbolic point of a surface transformation,, Amer. J. Math., 77 (1955), 526.  doi: 10.2307/2372639.  Google Scholar

[42]

S. Sternberg, Local contractions and a theorem of Poincaré,, Amer. J. Math., 79 (1957), 809.  doi: 10.2307/2372437.  Google Scholar

[43]

T. Wanner, Linearization of random dynamical systems,, In C. Jones, 4 (1995), 203.   Google Scholar

[44]

E. Zehnder, A simple proof of a generalization of a theorem by C. L. Siegel,, Lect. Notes in Math., 597 (1977), 855.   Google Scholar

[45]

W. Zhang and W. Weinian, Sharpness for C1 linearization of planar hyperbolic diffeomorphisms,, J. Differential Equations, 257 (2014), 4470.  doi: 10.1016/j.jde.2014.08.014.  Google Scholar

show all references

References:
[1]

L. Arnold, Random Dynamical Systems,, Springer, (1998).   Google Scholar

[2]

L. Arnold and K. Xu, Normal forms for random differential equations,, Journal of Differential Equations, 116 (1995), 484.  doi: 10.1006/jdeq.1995.1045.  Google Scholar

[3]

V. I. Arnold, Geometric Methods in the Theory of Ordinary Differential. Equations,, Springer-Verlag, (1983).   Google Scholar

[4]

V. I. Arnold, Small denominators I. One the mapping of a circle into itself,, Izv. Akad. Nauk. Math., 25 (1961), 21.   Google Scholar

[5]

A. Banyaga, R. de la Llave and C. E. Wayne, Cohomology equations near hyperbolic points and geometric versions of Sternberg linearization theorem,, J. Geom. Anal., 6 (1996), 613.  doi: 10.1007/BF02921624.  Google Scholar

[6]

G. R. Beliskii, Functional equations and the conjugacy of diffeomorphism of finite smoothness class,, Functional Anal. Appl., 7 (1973), 17.   Google Scholar

[7]

G. R. Beliskii, Equivalence and normal forms of germs of smooth mappings,, Russian Math. Surveys, 33 (1978), 95.   Google Scholar

[8]

A. D. Brjuno, Analytic form of differential equations I, II,, Trans. Mosc. Math. Soc., 25 (1971), 119.   Google Scholar

[9]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions,, LNM 580. Springer-Verlag, (1977).   Google Scholar

[10]

K. T. Chen, Equivalence and decomposition of vector fields about an elementary critical point,, Amer.J. Math., 85 (1963), 693.  doi: 10.2307/2373115.  Google Scholar

[11]

S.-N. Chow, K. Lu and Y.-Q. Shen, Normal form and linearization for quasiperiodic systems,, Trans. Amer. Math. Soc., 331 (1992), 361.  doi: 10.1090/S0002-9947-1992-1076612-1.  Google Scholar

[12]

N. D. Cong, Topological Dynamics of Random Dynamical Systems,, Orford Mathematical Monographs, (1997).   Google Scholar

[13]

M. ElBialy, Linearization of vector fields near resonant hyperbolic rest points,, J. Differential Equations, 118 (1995), 336.  doi: 10.1006/jdeq.1995.1076.  Google Scholar

[14]

D. M. Grobman, Topological classification of the neighborhood of a singular point in $n$-dimensional space,, Mat. Sb., 56 (1962), 77.   Google Scholar

[15]

P. Guo and J. Shen, Smooth invariant manifolds for random dynamical systems,, Rocky Mountain Journal of Mathematics, ().   Google Scholar

[16]

P. Hartman, On local homeomorphisms of Euclidean spaces,, Bol. Soc. Mat. Mexican, 5 (1960), 220.   Google Scholar

[17]

P. Hartman, On the local linearization of differential equations,, Proc. Amer. Math. Soc., 14 (1963), 568.  doi: 10.1090/S0002-9939-1963-0152718-3.  Google Scholar

[18]

Yu. S. Ilyashenko and W. Li, Nonlocal Bifurcations. Mathematical Surveys and Monographs,, American Mathematical Society, (1999).   Google Scholar

[19]

Yu. S. Ilyashenko and S. Yu. Yakovenko, Finitely smooth normal forms of local families of diffeomorphisms and vector fields, (Russian), Uspekhi Mat. Nauk, 46 (1991), 3.  doi: 10.1070/RM1991v046n01ABEH002733.  Google Scholar

[20]

Y. Kifer, Random Perturbations of Dynamical Systems,, Progress in Probability and Statistics, (1988).  doi: 10.1007/978-1-4615-8181-9.  Google Scholar

[21]

W. Li and K. Lu, Poincaré theorems for random dynamical systems,, Ergodic Theory Dynam. Systems, 25 (2005), 1221.  doi: 10.1017/S014338570400094X.  Google Scholar

[22]

W. Li and K. Lu, Sternberg theorems for random dynamical systems,, Comm. Pure Appl. Math., 58 (2005), 941.  doi: 10.1002/cpa.20083.  Google Scholar

[23]

W. Li and K. Lu, A Siegel theorem for random dynamical systems,, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 635.  doi: 10.3934/dcdsb.2008.9.635.  Google Scholar

[24]

P.-D. Liu, Random perturbations of Axiom A basic sets,, J. Statist. Phys., 90 (1998), 467.  doi: 10.1023/A:1023280407906.  Google Scholar

[25]

P.-D. Liu, Dynamics of Random perturbations: Smooth ergodic theory,, Ergod. Th. & Dynam. Sys., 21 (2001), 1279.  doi: 10.1017/S0143385701001614.  Google Scholar

[26]

P. Liu and M. Qian, Smooth Ergodic Theory of Random Dynamical Systems,, Lecture Notes in Mathematics, (1606).  doi: 10.1007/BFb0094308.  Google Scholar

[27]

K. R. Meyer, The implicit function theorem and analytic differential equations,, Lect. Notes in Math., 468 (1975), 191.   Google Scholar

[28]

J. K. Moser, A rapidly covergent iteration method and nonlinear differential equations II,, Ann. Scuo. Norm. Sup. Pisa., 20 (1966), 499.   Google Scholar

[29]

E. Nelson, Topics in Dynamics I. Flows,, Princeton University Press, (1969).   Google Scholar

[30]

M. Nagumo and K. Isé, On the normal forms of differential equations in the neighborhood of an equilibrium point,, Osaka Math. J., 9 (1957), 221.   Google Scholar

[31]

C. Pugh, On a theorem of P. Hartman,, Amer. J. Math., 91 (1969), 363.  doi: 10.2307/2373513.  Google Scholar

[32]

F. Takens, Partially hyperbolic fixed points,, Topology, 10 (1971), 133.  doi: 10.1016/0040-9383(71)90035-8.  Google Scholar

[33]

K. Palmer, Qualitative behavior of a system of ODE near an equilibrium point, A generalization of the Hartman- Grobman Theorem,, Technical Report, (1980).   Google Scholar

[34]

R. Pérez-Marco, Linearization of holomorphic germs with resonant linear part,, preprint., ().   Google Scholar

[35]

H. Poincaré, Sur le probléme des trois corps et les équations de la dynamique,, Acta Math., 13 (1890), 1.   Google Scholar

[36]

D. Ruelle, Random Smooth Dynamical Systems,, Lecture Notes in Rutgers, (1996).   Google Scholar

[37]

G. R. Sell, Smooth linearization near a fixed point,, Amer. J. Math., 107 (1985), 1035.  doi: 10.2307/2374346.  Google Scholar

[38]

G. R. Sell, Obstacles to linearization,, Diff. Urav., 20 (1984), 446.   Google Scholar

[39]

C. L. Siegel, Iteration of analytic functions,, Ann. Math., 43 (1942), 607.  doi: 10.2307/1968952.  Google Scholar

[40]

C. L. Siegel, Ober die Normalform analytischer Differentialgleichungen in der Nahe einer Gleichgewichtslosung,, Nachr . Akad. Wiss. Gottingen, 1952 (1952), 21.   Google Scholar

[41]

S. Sternberg, On the behavior of invariant curves near a hyberbolic point of a surface transformation,, Amer. J. Math., 77 (1955), 526.  doi: 10.2307/2372639.  Google Scholar

[42]

S. Sternberg, Local contractions and a theorem of Poincaré,, Amer. J. Math., 79 (1957), 809.  doi: 10.2307/2372437.  Google Scholar

[43]

T. Wanner, Linearization of random dynamical systems,, In C. Jones, 4 (1995), 203.   Google Scholar

[44]

E. Zehnder, A simple proof of a generalization of a theorem by C. L. Siegel,, Lect. Notes in Math., 597 (1977), 855.   Google Scholar

[45]

W. Zhang and W. Weinian, Sharpness for C1 linearization of planar hyperbolic diffeomorphisms,, J. Differential Equations, 257 (2014), 4470.  doi: 10.1016/j.jde.2014.08.014.  Google Scholar

[1]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[2]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[3]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[4]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[5]

Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329

[6]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[7]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[8]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[9]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[10]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[11]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[12]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[13]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[14]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[15]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[16]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[17]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[18]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[19]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001

[20]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (121)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]