Advanced Search
Article Contents
Article Contents

Decomposition of stochastic flows generated by Stratonovich SDEs with jumps

Abstract Related Papers Cited by
  • Consider a manifold $M$ endowed locally with a pair of complementary distributions $\Delta^H \oplus \Delta^V=TM$ and let $\text{Diff}(\Delta^H, M)$ and $\text{Diff}(\Delta^V, M)$ be the corresponding Lie subgroups generated by vector fields in the corresponding distributions. We decompose a stochastic flow with jumps, up to a stopping time, as $\varphi_t = \xi_t \circ \psi_t$, where $\xi_t \in \text{Diff}(\Delta^H, M)$ and $\psi_t \in \text{Diff}(\Delta^V, M)$. Our main result provides Stratonovich stochastic differential equations with jumps for each of these two components in the corresponding infinite dimensional Lie groups. We present an extension of the Itô-Ventzel-Kunita formula for stochastic flows with jumps generated by classical Marcus equation (as in Kurtz, Pardoux and Protter [11]). The results here correspond to an extension of Catuogno, da Silva and Ruffino [4], where this decomposition was studied for the continuous case.
    Mathematics Subject Classification: Primary: 60H10, 58J65; Secondary: 58D05.


    \begin{equation} \\ \end{equation}
  • [1]

    D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge University Press, 2004.doi: 10.1017/CBO9780511755323.


    J. M. Bismut, Mécanique Aléatoire, Lecture Notes in Math., 866. Springer-Verlag, Berlin-New York, 1981.


    P. J. Catuogno, F. B. da Silva and P. R. Ruffino, Decomposition of stochastic flows with automorphism of subbundles component, Stochastics and Dynamics, 12 (2012), 1150013, 15 pp.doi: 10.1142/S0219493712003705.


    P. J. Catuogno, F. B. da Silva and P. R. Ruffino, Decomposition of stochastic flows in manifolds with complementary distributions, Stochastics and Dynamics, 13 (2013), 1350009, 12 pp.doi: 10.1142/S0219493713500093.


    F. Colonius and W. Kliemann, The Dynamics of Control, Systems and Control: Foundations and Applications. Birkhäuser Boston, Inc., Boston, MA, 2000.doi: 10.1007/978-1-4612-1350-5.


    F. Colonius and P. R. Ruffino, Nonlinear Iwasawa decomposition of control flows, Discrete Continuous Dyn. Systems, (Serie A) 18 (2007), 339-354.doi: 10.3934/dcds.2007.18.339.


    I. G. Gargate and P. R. Ruffino, An averaging principle for diffusions in foliated spaces, The Annals of Probab., 44 (2016), 567-588.doi: 10.1214/14-AOP982.


    H. Kunita, Stochastic differential equations and stochastic flows of diffeomorphisms, in: École d'Eté de Probabilités de Saint-Flour XII - 1982, ed. P.L. Hennequin, Lecture Notes on Maths., Springer, 1097 (1984), 143-303.doi: 10.1007/BFb0099433.


    H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge University Press, Cambridge, 1997.


    X.-M. Li, An averaging principle for a completely integrable stochastic Hamiltonian system, Nonlinearity, 21 (2008), 803-822.doi: 10.1088/0951-7715/21/4/008.


    T. Kurtz, E. Pardoux and P. Protter, Stratonovich stochastic differential equations driven by general semimartingales, Annales de l'I.H.P., section B, 31 (1995), 351-377.


    M. Liao, Decomposition of stochastic flows and Lyapunov exponents, Probab. Theory Rel. Fields, 117 (2000), 589-607.doi: 10.1007/PL00008736.


    J. Milnor, Remarks on infinite dimensional lie groups, In: Relativity, Groups and Topology II, Les Houches Session XL, 1983, North Holland, Amsterdam, 1984, 1007-1057.


    K.-H. Neeb, Infinite Dimesional Lie Groups, Monastir Summer Schoool, 2009. Available from hal.archives-ouvertes.fr/docs/00/39/.../CoursKarl-HermannNeeb.pdf.


    H. Omori, Infinite Dimensional Lie Groups, Translations of Math Monographs 158, AMS, 1997.


    L. Morgado and P. Ruffino, Extension of time for decomposition of stochastic flows in spaces with complementary foliations, Electron. Comm. Probab., 20 (2015), 9pp.doi: 10.1214/ECP.v20-3762.


    P. Ruffino, Decomposition of stochastic flow and rotation matrix, Stochastics and Dynamics, 2 (2002), 93-108.doi: 10.1142/S0219493702000327.


    M. Patrão and L. A. B. San Martin, Semiflows on topological spaces: Chain transitivity and semigroups, J. Dynam. Differential Equations 19 (2007), 155-180.doi: 10.1007/s10884-006-9032-3.


    K. Twardowska, Approximation theorems of Wong-Zakai type for stochastic differential equations in infinite dimensions, Dissertationes Math., (Rozprawy Mat.) 325 (1993), 54 pp.

  • 加载中

Article Metrics

HTML views() PDF downloads(164) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint