Citation: |
[1] |
S. Albeverio, Yu. G. Kondratiev and M. Röckner, Strong Feller properties for distorted Brownian motion and applications to finite particle systems with singular interactions, Finite and infinite dimensional analysis in honor of Leonard Gross (New Orleans, LA, 2001), 15-35, Contemp. Math., 317, Amer. Math. Soc., Providence, RI, 2003.doi: 10.1090/conm/317/05517. |
[2] |
W. Arendt, R. Chill, C. Seifert, H. Vogt and J. Voigt, Form Methods for Evolution Equations and Application, The 18th internet seminar, https://www.mat.tuhh.de/isem18/18th_Internet_Seminar, 2014/2015. |
[3] |
B. Baur, Elliptic Boundary Value Problems and Constructions of $L^p$-strong Feller Processes with Singular Drift and Reflection, Dissertation, Technische Universität Kaiserslautern, Kaiserslautern, 2013. With a preface by Martin Grothaus. Springer Spektrum, Wiesbaden, 2014.doi: 10.1007/978-3-658-05829-6. |
[4] |
V. Bogachev, N. Krylov and M. Röckner, Elliptic regularity and essential self-adjointness of Dirichlet operators on $R^d$, Ann. Scuola Norm. Sup. Pisa Cl. Sci., (4) 24 (1997), 451-461. |
[5] |
V. Bogachev, N. Krylov and M. Röckner, On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions, Comm. Partial Differential Equations, 26 (2001), 2037-2080.doi: 10.1081/PDE-100107815. |
[6] |
K. L. Chung and J. B. Walsh, Markov Processes, Brownian Motion, and Time Symmetry, Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 249. Springer, New York, 2005.doi: 10.1007/0-387-28696-9. |
[7] |
E. Fabes, C. Kenig and R. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations, 7 (1982), 77-116.doi: 10.1080/03605308208820218. |
[8] |
T. Fattler and M. Grothaus, Strong Feller properties for distorted Brownian motion with reflecting boundary condition and an application to continuous N-particle systems with singular interactions, J. Funct. Anal., 246 (2007), 217-241.doi: 10.1016/j.jfa.2007.01.014. |
[9] |
E. Fedrizzi and F. Flandoli, Hölder flow and differentiability for SDEs with nonregular drift, Stoch. Anal. Appl., 31 (2013), 708-736.doi: 10.1080/07362994.2012.628908. |
[10] |
M. Fukushima, Energy forms and diffusion processes, Mathematics physics, World Sci. Publishing, Singapore, 1 (1985), 65-97.doi: 10.1142/9789814415125_0002. |
[11] |
M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, Second revised and extended edition. de Gruyter Studies in Mathematics, 19. Walter de Gruyter Co., Berlin, 2011. |
[12] |
I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, (second edition), Springer-Verlag, 1991.doi: 10.1007/978-1-4612-0949-2. |
[13] |
N. V. Krylov and M. Röckner, Strong solutions of stochastic equations with singular time dependent drift, Prob. Th. Rel. Fields, 131 (2005), 154-196.doi: 10.1007/s00440-004-0361-z. |
[14] |
Z. M. Ma and M. Röckner, Introduction to the Theory of (Non-symmetric) Dirichlet Forms, Universitext. Springer-Verlag, Berlin, 1992.doi: 10.1007/978-3-642-77739-4. |
[15] |
Y. Oshima, Semi-Dirichlet Forms and Markov Processes, De Gruyter Studies in Mathematics, 48. Walter de Gruyter & Co., Berlin, 2013.doi: 10.1515/9783110302066. |
[16] |
L. Saloff-Coste, A note on Poincaré, Sobolev, and Harnack inequalities, Internat. Math. Res. Notices, (1992), 27-38.doi: 10.1155/S1073792892000047. |
[17] |
J. Shin and G. Trutnau, On the stochastic regularity of distorted Brownian motions, to appear in Trans. Amer. Math. Soc., arXiv:1405.7585. doi: 10.1090/tran/6887. |
[18] |
W. Stannat, (Nonsymmetric) Dirichlet operators on $L^1$: Existence, uniqueness and associated Markov processes, Ann. Scuola Norm. Sup. Pisa Cl. Sci., (4) 28 (1999), 99-140. |
[19] |
G. Trutnau, On a class of non-symmetric diffusions containing fully non-symmetric distorted Brownian motions, Forum Math., 15 (2003), 409-437.doi: 10.1515/form.2003.022. |
[20] |
G. Trutnau, On Hunt processes and strict capacities associated with generalized Dirichlet forms, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 8 (2005), 357-382.doi: 10.1142/S0219025705002013. |
[21] |
B. O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces, Lecture notes in mathematics;1736. Springer, 2000.doi: 10.1007/BFb0103908. |
[22] |
X. Zhang, Strong solutions of SDES with singular drift and Sobolev diffusion coefficients, Stochastic Process. Appl., 115 (2005), 1805-1818.doi: 10.1016/j.spa.2005.06.003. |