Citation: |
[1] |
Aït-Sahalia, Telling from discrete data whether the underlying continuous-time model is a diffusion, Journal of Finance, 57 (2002), 2075-2112. |
[2] |
S. Albeverio, Z. Brzeźniak and J.-L. Wu, Existence of global solutions and invariant measures for stochastic differential equations driven by Poisson type noise with non-Lipschitz coefficients, Journal of Mathematical Analysis and Applications, 371 (2010), 309-322.doi: 10.1016/j.jmaa.2010.05.039. |
[3] |
Z. Brzeźniak, W. Liu and J. Zhu, Strong solutions for SPDE with locally monotone coefficients driven by Lévy noise, Nonlinear Analysis: Real World Applications, 17 (2014), 283-310.doi: 10.1016/j.nonrwa.2013.12.005. |
[4] |
W. E. Baylis and J. Huschilt, Energy balance with the Landau-Lifshitz equation, Phys. Lett. A, 301 (2002), 7-12.doi: 10.1016/S0375-9601(02)00963-5. |
[5] |
D. Burgreen, Free Vibrations of a Pin-Ended Column with Constant Distance Between Pin Ends, No. PIBAL-166. POLYTECHNIC INST OF BROOKLYN NY, 1950. |
[6] |
Z. Brzeźniak and K. D. Elworthy, Stochastic differential equations on Banach manifolds, Methods Funct. Anal. Topology, 6 (2000), 43-84. |
[7] |
Z. Brzeźniak and D. Gątarek, Martingale solutions and invariant measures for stochastic evolution equations in Banach spaces, Stochastic Processes and Their Applications, 84 (1999), 187-225.doi: 10.1016/S0304-4149(99)00034-4. |
[8] |
Z. Brzeźniak, B. Maslowski and J. Seidler, Stochastic nonlinear beam equations, Probability Theory and Related Fields 132 (2005), 119-149.doi: 10.1007/s00440-004-0392-5. |
[9] |
Z. Brzeźniak, E. Hausenblas and P. Razafimandimby, Martingale solutions for stochastic equation of reaction diffusion type driven by Lévy noise or Poisson random measure, preprint, arXiv:1010.5933. |
[10] |
J. F. Burrow, P. D. Baxter and J. W. Pitchford, Lévy processes, saltatory foraging, and superdiffusion, Mathematical Modelling of Natural Phenomena 3 (2008), 115-130.doi: 10.1051/mmnp:2008060. |
[11] |
A. Carroll, The Stochastic Nonlinear Heat Equation, Ph. D. Thesis, The University of Hull, 1999. |
[12] |
P. L. Chow and J. L. Menaldi, Stochastic PDE for nonlinear vibration of elastic panels, Differential Integral Equations, 12 (1999), 419-434. |
[13] |
S. R. Das, The surprise element: Jumps in interest rates, Journal of Econometrics, 106 (2002), 27-65.doi: 10.1016/S0304-4076(01)00085-9. |
[14] |
J. G. Eisley, Nonlinear vibration of beams and rectangular plates, Zeitschrift für angewandte Mathematik und Physik ZAMP, 15 (1964), 167-175.doi: 10.1007/BF01602658. |
[15] |
D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001. |
[16] |
I. Gyöngy and N. V. Krylov, On Stochastic Equations with Respect to Semimartingales. I, Stochastics: An International Journal of Probability and Stochastic Processes, 4 (1980), 1-21.doi: 10.1080/03610918008833154. |
[17] |
I. Gyöngy, On stochastic equations with respect to semimartingale III, Stochastics: An International Journal of Probability and Stochastic Processes, 7 (1982), 231-254.doi: 10.1080/17442508208833220. |
[18] |
E. Hausenblas, Existence, uniqueness and regularity of parabolic SPDEs driven by Poisson random measure, Electron. J. Probab, 10 (2005), 1496-1546.doi: 10.1214/EJP.v10-297. |
[19] |
P. D. Lax and R. S. Phillips, Scattering Theory, Pure and Applied Mathematics, Vol. 26 Academic Press, New York-London, 1967. |
[20] |
R. Z. Khas'minskii, Stability of systems of differential equations under random perturbations of their parameters, Izdat. "Nauka'', Moscow, 1969. |
[21] |
B. Maslowski, J. Seidler and I. Vrkoč, Integral continuity and stability for stochastic hyperbolic equations, Differential Integral Equations, 6 (1993), 355-382. |
[22] |
M. Métivier, Semimartingales, A Course on Stochastic Processes, de Gruyter Studies in Mathematics, 2. Walter de Gruyter & Co., Berlin-New York, 1982. |
[23] |
M. Ondreját, a private communication to [8] |
[24] |
S. K. Patcheu, On a global solution and asymptotic behaviour for the generalized damped extensible beam equation, Journal of Differential Equations, 135 (1997), 299-314.doi: 10.1006/jdeq.1996.3231. |
[25] |
S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise: An Evolution Equation Approach, Encyclopedia of Mathematics and its Applications, 113. Cambridge University Press, Cambridge, 2007.doi: 10.1017/CBO9780511721373. |
[26] |
A. J. Pritchard and J. Zabczyk, Stability and stabilizability of infinite-dimensional systems, SIAM Review, 23 (1981), 25-52.doi: 10.1137/1023003. |
[27] |
M. Riedle, Ornstein-Uhlenbeck processes driven by cylindrical Lévy processes, Potential Analysis, 42 (2015), 809-838.doi: 10.1007/s11118-014-9458-x. |
[28] |
T. Russo, P. Baldi, A. Parisi, G. Magnifico, S. Mariani and S. Cataudella, Lévy processes and stochastic von Bertalanffy models of growth, with application to fish population analysis, Journal of Theoretical Biology, 258 (2009), 521-529.doi: 10.1016/j.jtbi.2009.01.033. |
[29] |
L. Tubaro, On abstract stochastic differential equation in Hilbert spaces with dissipative drift, Stochastic Analysis and Applications, 1 (1983), 205-214.doi: 10.1080/07362998308809012. |
[30] |
L. Tubaro, An estimate of Burkholder type for stochastic processes defined by the stochastic integral, Stochastic Analysis and Applications, 2 (1984), 187-192.doi: 10.1080/07362998408809032. |
[31] |
J. Van Neerven and J. Zhu, A maximal inequality for stochastic convolutions in 2-smooth Banach spaces, Electron. Commun. Probab, 16 (2011), 689-705.doi: 10.1214/ECP.v16-1677. |
[32] |
H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Mathematical Library, 18. North-Holland Publishing Co., Amsterdam-New York, 1978. |
[33] |
S. Woinowsky-Krieger, The effect of an axial force on the vibration of hinged bars, J. Appl. Mech., 17 (1950), 35-36. |
[34] |
J. Zhu, A Study of SPDEs w.r.t. Compensated Poisson Random Measures and Related Topics, Ph. D. Thesis, University of York, 2010. |
[35] |
J. Zhu, Z. Brzeźniak and E. Hausenblas, Maximal inequality of stochastic convolution driven by compensated Poisson random measures in Banach spaces, preprint, arXiv:1005.1600. |