Citation: |
[1] |
E. C. Bullard, The stability of a homopolar dynamo, Proc. Camb. Phil. Soc., 51 (1955), 744-760.doi: 10.1017/S0305004100030814. |
[2] |
C. Christopher, J. Llibre and J. V. Pereira, Multiplicity of invariant algebraic curves in polynomial vector fields, Pacific J. Math., 229 (2007), 63-117.doi: 10.2140/pjm.2007.229.63. |
[3] |
B. Hassard, N. Kazarinoff and Y. Wan, Theory and Application of Hopf Bifurcation, Cambridge University Press, 1981. |
[4] |
R. Hide, How to locate the electrically-conducting fluid core a planet from external magnetic observations, Nature, 271 (1978), 640-641.doi: 10.1038/271640a0. |
[5] |
G. Jiang and Q. Lu, Impulsive state feedback control of a predator-prey model, J. Comput. Appl. Math., 200 (2007), 193-207.doi: 10.1016/j.cam.2005.12.013. |
[6] |
E. Knobloch, Chaos in the segmented disc dynamo, Phys. Lett. A, 82 (1981), 439-440.doi: 10.1016/0375-9601(81)90274-7. |
[7] |
Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer-Verlag, New York, 1998. |
[8] |
Y. Liu, S. Pang and D. Chen, An unusual chaotic system and its control, Math. Comput. Modelling, 57 (2013), 2473-2493.doi: 10.1016/j.mcm.2012.12.006. |
[9] |
J. Llibre and X. Zhang, Darboux theory of integrability in image taking into account the multiplicity, J. Differ. Equ., 246 (2009), 541-551.doi: 10.1016/j.jde.2008.07.020. |
[10] |
H. K. Moffatt, A self-consistent treatment of simple dynamo systems, Geophys. Astrophys. Fluid Dyn., 14 (1979), 147-166.doi: 10.1080/03091927908244536. |
[11] |
H. K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids, Cambridge University Press, 1978. |
[12] |
C. Valls, Darboux integrability of a nonlinear financial system, Appl. Math. Comput., 218 (2011), 3297-3302.doi: 10.1016/j.amc.2011.08.069. |
[13] |
Z. Wei, Dynamical behaviors of a chaotic system with no equilibria, Phys. Lett. A, 376 (2011), 102-108.doi: 10.1016/j.physleta.2011.10.040. |