December  2016, 21(10): 3315-3330. doi: 10.3934/dcdsb.2016099

Minimizing $\mathcal R_0$ for in-host virus model with periodic combination antiviral therapy

1. 

Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504, United States

2. 

Department of Mathematics, University of Florida, 1400 Stadium Road, Gainesville, FL 32611

Received  December 2015 Revised  May 2016 Published  November 2016

The aim of this article is to provide formulas and properties of the basic reproduction number, $\mathcal R_0$, for a within-host virus model with periodic combination drug treatment. In particular, we extend and further results about how the phase difference between drug treatment can critically affect the asymptotic dynamics of model and corresponding $\mathcal R_0$. Our main theorem establishes that $\mathcal R_0$ is minimized for out-of-phase efficacies and maximized for in-phase efficacies in a special case where drug efficacies are ``bang-bang'' functions.
Citation: Cameron J. Browne, Sergei S. Pilyugin. Minimizing $\mathcal R_0$ for in-host virus model with periodic combination antiviral therapy. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3315-3330. doi: 10.3934/dcdsb.2016099
References:
[1]

B. Adams, H. Banks, H. Kwon and H. Tran, Dynamic multidrug therapies for HIV: Optimal and STI control approaches,, Mathematical Biosciences and Engineering, 1 (2004), 223.  doi: 10.3934/mbe.2004.1.223.  Google Scholar

[2]

N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality,, Journal of Mathematical Biology, 53 (2006), 421.  doi: 10.1007/s00285-006-0015-0.  Google Scholar

[3]

N. Bacaër and R. Ouifki, Growth rate and basic reproduction number for population models with a simple periodic factor,, Mathematical Biosciences, 210 (2007), 647.  doi: 10.1016/j.mbs.2007.07.005.  Google Scholar

[4]

N. Bacaër et al., On the biological interpretation of a definition for the parameter r 0 in periodic population models,, Journal of Mathematical Biology, 65 (2012), 601.  doi: 10.1007/s00285-011-0479-4.  Google Scholar

[5]

C. Browne, Two Extensions of a Classical Virus Model,, PhD thesis, (2012).   Google Scholar

[6]

C. J. Browne and S. S. Pilyugin, Periodic multidrug therapy in a within-host virus model,, Bulletin of Mathematical Biology, 74 (2012), 562.  doi: 10.1007/s11538-011-9677-x.  Google Scholar

[7]

C. J. Browne and S. S. Pilyugin, Global analysis of age-structured within-host virus model,, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1999.  doi: 10.3934/dcdsb.2013.18.1999.  Google Scholar

[8]

C. J. Browne, R. J. Smith and L. Bourouiba, From regional pulse vaccination to global disease eradication: Insights from a mathematical model of poliomyelitis,, Journal of Mathematical Biology, 71 (2015), 215.  doi: 10.1007/s00285-014-0810-y.  Google Scholar

[9]

J. M. Conway and A. S. Perelson, Post-treatment control of HIV infection,, Proceedings of the National Academy of Sciences, 112 (2015), 5467.  doi: 10.1073/pnas.1419162112.  Google Scholar

[10]

P. De Leenheer, Within-host virus models with periodic antiviral therapy,, Bulletin of Mathematical Biology, 71 (2009), 189.  doi: 10.1007/s11538-008-9359-5.  Google Scholar

[11]

P. De Leenheer and S. S. Pilyugin, Multistrain virus dynamics with mutations: A global analysis,, Mathematical Medicine and Biology, 25 (2008), 285.  doi: 10.1093/imammb/dqn023.  Google Scholar

[12]

N. M. Dixit and A. S. Perelson, Complex patterns of viral load decay under antiretroviral therapy: Influence of pharmacokinetics and intracellular delay,, Journal of Theoretical Biology, 226 (2004), 95.  doi: 10.1016/j.jtbi.2003.09.002.  Google Scholar

[13]

A. d'Onofrio, Periodically varying antiviral therapies: Conditions for global stability of the virus free state,, Applied Mathematics and Computation, 168 (2005), 945.  doi: 10.1016/j.amc.2004.09.014.  Google Scholar

[14]

M. A. Nowak and R. M. May, Virus Dynamics,, 2000., ().   Google Scholar

[15]

A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo,, SIAM Review, 41 (1999), 3.  doi: 10.1137/S0036144598335107.  Google Scholar

[16]

L. Rong, Z. Feng and A. S. Perelson, Emergence of HIV-1 drug resistance during antiretroviral treatment,, Bulletin of Mathematical Biology, 69 (2007), 2027.  doi: 10.1007/s11538-007-9203-3.  Google Scholar

[17]

D. I. Rosenbloom, A. L. Hill, S. A. Rabi, R. F. Siliciano and M. A. Nowak, Antiretroviral dynamics determines hiv evolution and predicts therapy outcome,, Nature Medicine, 18 (2012), 1378.  doi: 10.1038/nm.2892.  Google Scholar

[18]

H. L. Smith and P. De Leenheer, Virus dynamics: a global analysis,, SIAM Journal on Applied Mathematics, 63 (2003), 1313.  doi: 10.1137/S0036139902406905.  Google Scholar

[19]

W. Wang and X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments,, Journal of Dynamics and Differential Equations, 20 (2008), 699.  doi: 10.1007/s10884-008-9111-8.  Google Scholar

[20]

X. Wang, X. Song, S. Tang and L. Rong, Dynamics of an HIV model with multiple infection stages and treatment with different drug classes,, Bulletin of Mathematical Biology, 78 (2016), 322.  doi: 10.1007/s11538-016-0145-5.  Google Scholar

[21]

Y. Wang, F. Brauer, J. Wu and J. M. Heffernan, A delay-dependent model with HIV drug resistance during therapy,, Journal of Mathematical Analysis and Applications, 414 (2014), 514.  doi: 10.1016/j.jmaa.2013.12.064.  Google Scholar

[22]

Z. Wang and X.-Q. Zhao, A within-host virus model with periodic multidrug therapy,, Bulletin of Mathematical Biology, 75 (2013), 543.  doi: 10.1007/s11538-013-9820-y.  Google Scholar

show all references

References:
[1]

B. Adams, H. Banks, H. Kwon and H. Tran, Dynamic multidrug therapies for HIV: Optimal and STI control approaches,, Mathematical Biosciences and Engineering, 1 (2004), 223.  doi: 10.3934/mbe.2004.1.223.  Google Scholar

[2]

N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality,, Journal of Mathematical Biology, 53 (2006), 421.  doi: 10.1007/s00285-006-0015-0.  Google Scholar

[3]

N. Bacaër and R. Ouifki, Growth rate and basic reproduction number for population models with a simple periodic factor,, Mathematical Biosciences, 210 (2007), 647.  doi: 10.1016/j.mbs.2007.07.005.  Google Scholar

[4]

N. Bacaër et al., On the biological interpretation of a definition for the parameter r 0 in periodic population models,, Journal of Mathematical Biology, 65 (2012), 601.  doi: 10.1007/s00285-011-0479-4.  Google Scholar

[5]

C. Browne, Two Extensions of a Classical Virus Model,, PhD thesis, (2012).   Google Scholar

[6]

C. J. Browne and S. S. Pilyugin, Periodic multidrug therapy in a within-host virus model,, Bulletin of Mathematical Biology, 74 (2012), 562.  doi: 10.1007/s11538-011-9677-x.  Google Scholar

[7]

C. J. Browne and S. S. Pilyugin, Global analysis of age-structured within-host virus model,, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1999.  doi: 10.3934/dcdsb.2013.18.1999.  Google Scholar

[8]

C. J. Browne, R. J. Smith and L. Bourouiba, From regional pulse vaccination to global disease eradication: Insights from a mathematical model of poliomyelitis,, Journal of Mathematical Biology, 71 (2015), 215.  doi: 10.1007/s00285-014-0810-y.  Google Scholar

[9]

J. M. Conway and A. S. Perelson, Post-treatment control of HIV infection,, Proceedings of the National Academy of Sciences, 112 (2015), 5467.  doi: 10.1073/pnas.1419162112.  Google Scholar

[10]

P. De Leenheer, Within-host virus models with periodic antiviral therapy,, Bulletin of Mathematical Biology, 71 (2009), 189.  doi: 10.1007/s11538-008-9359-5.  Google Scholar

[11]

P. De Leenheer and S. S. Pilyugin, Multistrain virus dynamics with mutations: A global analysis,, Mathematical Medicine and Biology, 25 (2008), 285.  doi: 10.1093/imammb/dqn023.  Google Scholar

[12]

N. M. Dixit and A. S. Perelson, Complex patterns of viral load decay under antiretroviral therapy: Influence of pharmacokinetics and intracellular delay,, Journal of Theoretical Biology, 226 (2004), 95.  doi: 10.1016/j.jtbi.2003.09.002.  Google Scholar

[13]

A. d'Onofrio, Periodically varying antiviral therapies: Conditions for global stability of the virus free state,, Applied Mathematics and Computation, 168 (2005), 945.  doi: 10.1016/j.amc.2004.09.014.  Google Scholar

[14]

M. A. Nowak and R. M. May, Virus Dynamics,, 2000., ().   Google Scholar

[15]

A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo,, SIAM Review, 41 (1999), 3.  doi: 10.1137/S0036144598335107.  Google Scholar

[16]

L. Rong, Z. Feng and A. S. Perelson, Emergence of HIV-1 drug resistance during antiretroviral treatment,, Bulletin of Mathematical Biology, 69 (2007), 2027.  doi: 10.1007/s11538-007-9203-3.  Google Scholar

[17]

D. I. Rosenbloom, A. L. Hill, S. A. Rabi, R. F. Siliciano and M. A. Nowak, Antiretroviral dynamics determines hiv evolution and predicts therapy outcome,, Nature Medicine, 18 (2012), 1378.  doi: 10.1038/nm.2892.  Google Scholar

[18]

H. L. Smith and P. De Leenheer, Virus dynamics: a global analysis,, SIAM Journal on Applied Mathematics, 63 (2003), 1313.  doi: 10.1137/S0036139902406905.  Google Scholar

[19]

W. Wang and X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments,, Journal of Dynamics and Differential Equations, 20 (2008), 699.  doi: 10.1007/s10884-008-9111-8.  Google Scholar

[20]

X. Wang, X. Song, S. Tang and L. Rong, Dynamics of an HIV model with multiple infection stages and treatment with different drug classes,, Bulletin of Mathematical Biology, 78 (2016), 322.  doi: 10.1007/s11538-016-0145-5.  Google Scholar

[21]

Y. Wang, F. Brauer, J. Wu and J. M. Heffernan, A delay-dependent model with HIV drug resistance during therapy,, Journal of Mathematical Analysis and Applications, 414 (2014), 514.  doi: 10.1016/j.jmaa.2013.12.064.  Google Scholar

[22]

Z. Wang and X.-Q. Zhao, A within-host virus model with periodic multidrug therapy,, Bulletin of Mathematical Biology, 75 (2013), 543.  doi: 10.1007/s11538-013-9820-y.  Google Scholar

[1]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[2]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[3]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[4]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[5]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[6]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[7]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[8]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[9]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[10]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[11]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[12]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[13]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[14]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357

[15]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[16]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[17]

Adam Glick, Antonio Mastroberardino. Combined therapy for treating solid tumors with chemotherapy and angiogenic inhibitors. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020343

[18]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[19]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[20]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]