-
Previous Article
Exponential integrability properties of Euler discretization schemes for the Cox--Ingersoll--Ross process
- DCDS-B Home
- This Issue
-
Next Article
Minimizing $\mathcal R_0$ for in-host virus model with periodic combination antiviral therapy
Optimal control of a perturbed sweeping process via discrete approximations
1. | Department of Mathematics, Wayne State University, Detroit, Michigan 48202, United States |
2. | Department of Mathematics, Wayne State University, Detroit, MI 48202 |
References:
[1] |
Discrete Contin. Dyn. Syst.-Ser. B, 19 (2014), 2709-2738.
doi: 10.3934/dcdsb.2014.19.2709. |
[2] |
Math. Program., 148 (2014), 5-47.
doi: 10.1007/s10107-014-0754-4. |
[3] |
Springer, 2005. |
[4] |
Discrete Contin. Dyn. Syst.-Ser. B, 18 (2013), 331-348.
doi: 10.3934/dcdsb.2013.18.331. |
[5] |
Springer, 1996.
doi: 10.1007/978-1-4612-4048-8. |
[6] |
J. Nonlinear Convex Anal., 15 (2014), 1043-1070. |
[7] |
T. H. Cao and B. S. Mordukhovich, Optimality conditions for a controlled sweeping process with applications to the crowd motion model,, preprint, (). Google Scholar |
[8] |
Dyn. Contin. Discrete Impuls. Syst.-Ser. B, 19 (2012), 117-159. |
[9] |
J. Diff. Eqs., 260 (2016), 3397-3447.
doi: 10.1016/j.jde.2015.10.039. |
[10] |
In Y. Gao and D. Motreanu, editors Handbook of Nonconvex Analysis, International Press, (2010), 99-182. |
[11] |
J. Diff. Eqs., 243 (2007), 301-328.
doi: 10.1016/j.jde.2007.05.011. |
[12] |
Math. Program., 104 (2005), 347-373.
doi: 10.1007/s10107-005-0619-y. |
[13] |
SIAM J. Optim., 20 (2010), 2199-2227.
doi: 10.1137/090766413. |
[14] |
Springer, 1989.
doi: 10.1007/978-3-642-61302-9. |
[15] |
In P. Drabek, P. Krečí and P. Takac, editors, Nonlinear Differential Equations, Res. Notes Math. 404, pages 47-110. Chapman & Hall, CRC, 1999. |
[16] |
In B. Brogliato, editor, Impacts in Mechanical Systems, Lecture Notes in Phys. 551, pages 1-60, Springer 2000.
doi: 10.1007/3-540-45501-9_1. |
[17] |
C. R. Acad. Sci. Paris Ser. I, 346 (2008), 1245-1250.
doi: 10.1016/j.crma.2008.10.014. |
[18] |
Birkhäuser, 1993.
doi: 10.1007/978-3-0348-7614-8. |
[19] |
In D. A. Field and V. Komkov, editors, Theoretical Aspects of Industrial Design, SIAM, (1992), pages 32-46. |
[20] |
SIAM J. Control Optim., 33 (1995), 882-915.
doi: 10.1137/S0363012993245665. |
[21] |
Springer, 2006. |
[22] |
Springer, 2006. |
[23] |
In G. Capriz and G. Stampacchia, editors, New Variational Techniques in Mathematical Physics, Proceedings of C.I.M.E. Summer Schools, pages 173-322. Cremonese, 1974. |
[24] |
Math. Program., 113 (2008), 345-424.
doi: 10.1007/s10107-006-0052-x. |
[25] |
SIAM J. Control Optim., 47 (2008), 2773-2794.
doi: 10.1137/080718711. |
[26] |
SIAM J. Numer. Anal., 47 (2009), 3884-3909.
doi: 10.1137/080744050. |
[27] |
Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-642-02431-3. |
[28] |
Trends in Industrial and Applied Mathematics, Kluwer, 72 (2002), 339-354.
doi: 10.1007/978-1-4613-0263-6_15. |
[29] |
SIAM, 2011.
doi: 10.1137/1.9781611970715. |
[30] |
Kluwer, 2000.
doi: 10.1007/978-94-015-9490-5. |
[31] |
Birkhaüser, 2000. |
show all references
References:
[1] |
Discrete Contin. Dyn. Syst.-Ser. B, 19 (2014), 2709-2738.
doi: 10.3934/dcdsb.2014.19.2709. |
[2] |
Math. Program., 148 (2014), 5-47.
doi: 10.1007/s10107-014-0754-4. |
[3] |
Springer, 2005. |
[4] |
Discrete Contin. Dyn. Syst.-Ser. B, 18 (2013), 331-348.
doi: 10.3934/dcdsb.2013.18.331. |
[5] |
Springer, 1996.
doi: 10.1007/978-1-4612-4048-8. |
[6] |
J. Nonlinear Convex Anal., 15 (2014), 1043-1070. |
[7] |
T. H. Cao and B. S. Mordukhovich, Optimality conditions for a controlled sweeping process with applications to the crowd motion model,, preprint, (). Google Scholar |
[8] |
Dyn. Contin. Discrete Impuls. Syst.-Ser. B, 19 (2012), 117-159. |
[9] |
J. Diff. Eqs., 260 (2016), 3397-3447.
doi: 10.1016/j.jde.2015.10.039. |
[10] |
In Y. Gao and D. Motreanu, editors Handbook of Nonconvex Analysis, International Press, (2010), 99-182. |
[11] |
J. Diff. Eqs., 243 (2007), 301-328.
doi: 10.1016/j.jde.2007.05.011. |
[12] |
Math. Program., 104 (2005), 347-373.
doi: 10.1007/s10107-005-0619-y. |
[13] |
SIAM J. Optim., 20 (2010), 2199-2227.
doi: 10.1137/090766413. |
[14] |
Springer, 1989.
doi: 10.1007/978-3-642-61302-9. |
[15] |
In P. Drabek, P. Krečí and P. Takac, editors, Nonlinear Differential Equations, Res. Notes Math. 404, pages 47-110. Chapman & Hall, CRC, 1999. |
[16] |
In B. Brogliato, editor, Impacts in Mechanical Systems, Lecture Notes in Phys. 551, pages 1-60, Springer 2000.
doi: 10.1007/3-540-45501-9_1. |
[17] |
C. R. Acad. Sci. Paris Ser. I, 346 (2008), 1245-1250.
doi: 10.1016/j.crma.2008.10.014. |
[18] |
Birkhäuser, 1993.
doi: 10.1007/978-3-0348-7614-8. |
[19] |
In D. A. Field and V. Komkov, editors, Theoretical Aspects of Industrial Design, SIAM, (1992), pages 32-46. |
[20] |
SIAM J. Control Optim., 33 (1995), 882-915.
doi: 10.1137/S0363012993245665. |
[21] |
Springer, 2006. |
[22] |
Springer, 2006. |
[23] |
In G. Capriz and G. Stampacchia, editors, New Variational Techniques in Mathematical Physics, Proceedings of C.I.M.E. Summer Schools, pages 173-322. Cremonese, 1974. |
[24] |
Math. Program., 113 (2008), 345-424.
doi: 10.1007/s10107-006-0052-x. |
[25] |
SIAM J. Control Optim., 47 (2008), 2773-2794.
doi: 10.1137/080718711. |
[26] |
SIAM J. Numer. Anal., 47 (2009), 3884-3909.
doi: 10.1137/080744050. |
[27] |
Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-642-02431-3. |
[28] |
Trends in Industrial and Applied Mathematics, Kluwer, 72 (2002), 339-354.
doi: 10.1007/978-1-4613-0263-6_15. |
[29] |
SIAM, 2011.
doi: 10.1137/1.9781611970715. |
[30] |
Kluwer, 2000.
doi: 10.1007/978-94-015-9490-5. |
[31] |
Birkhaüser, 2000. |
[1] |
Alexander Tolstonogov. BV solutions of a convex sweeping process with a composed perturbation. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021012 |
[2] |
Rama Ayoub, Aziz Hamdouni, Dina Razafindralandy. A new Hodge operator in discrete exterior calculus. Application to fluid mechanics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021062 |
[3] |
Zhenquan Zhang, Meiling Chen, Jiajun Zhang, Tianshou Zhou. Analysis of non-Markovian effects in generalized birth-death models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3717-3735. doi: 10.3934/dcdsb.2020254 |
[4] |
Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021020 |
[5] |
Elimhan N. Mahmudov. Second order discrete time-varying and time-invariant linear continuous systems and Kalman type conditions. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021010 |
[6] |
Tadeusz Kaczorek, Andrzej Ruszewski. Analysis of the fractional descriptor discrete-time linear systems by the use of the shuffle algorithm. Journal of Computational Dynamics, 2021 doi: 10.3934/jcd.2021007 |
[7] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[8] |
Jan Rychtář, Dewey T. Taylor. Moran process and Wright-Fisher process favor low variability. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3491-3504. doi: 10.3934/dcdsb.2020242 |
[9] |
Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 |
[10] |
Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597 |
[11] |
Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29 |
[12] |
Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3109-3140. doi: 10.3934/dcds.2020400 |
[13] |
Philippe Jouan, Ronald Manríquez. Solvable approximations of 3-dimensional almost-Riemannian structures. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021023 |
[14] |
Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021040 |
[15] |
José Antonio Carrillo, Martin Parisot, Zuzanna Szymańska. Mathematical modelling of collagen fibres rearrangement during the tendon healing process. Kinetic & Related Models, 2021, 14 (2) : 283-301. doi: 10.3934/krm.2021005 |
[16] |
Zhenbing Gong, Yanping Chen, Wenyu Tao. Jump and variational inequalities for averaging operators with variable kernels. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021045 |
[17] |
Craig Cowan. Supercritical elliptic problems involving a Cordes like operator. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021037 |
[18] |
John Villavert. On problems with weighted elliptic operator and general growth nonlinearities. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021023 |
[19] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[20] |
Ethan Akin, Julia Saccamano. Generalized intransitive dice II: Partition constructions. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021005 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]