• Previous Article
    Exponential integrability properties of Euler discretization schemes for the Cox--Ingersoll--Ross process
  • DCDS-B Home
  • This Issue
  • Next Article
    Minimizing $\mathcal R_0$ for in-host virus model with periodic combination antiviral therapy
December  2016, 21(10): 3331-3358. doi: 10.3934/dcdsb.2016100

Optimal control of a perturbed sweeping process via discrete approximations

1. 

Department of Mathematics, Wayne State University, Detroit, Michigan 48202, United States

2. 

Department of Mathematics, Wayne State University, Detroit, MI 48202

Received  November 2015 Revised  February 2016 Published  November 2016

The paper addresses an optimal control problem for a perturbed sweeping process of the rate-independent hysteresis type described by a controlled ``play-and stop" operator with separately controlled perturbations. This problem can be reduced to dynamic optimization of a state-constrained unbounded differential inclusion with highly irregular data that cannot be treated by means of known results in optimal control theory for differential inclusions. We develop the method of discrete approximations, which allows us to adequately replace the original optimal control problem by a sequence of well-posed finite-dimensional optimization problems whose optimal solutions strongly converge to that of the controlled perturbed sweeping process. To solve the discretized control systems, we derive effective necessary optimality conditions by using second-order generalized differential tools of variational analysis that explicitly calculated in terms of the given problem data.
Citation: Tan H. Cao, Boris S. Mordukhovich. Optimal control of a perturbed sweeping process via discrete approximations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3331-3358. doi: 10.3934/dcdsb.2016100
References:
[1]

L. Adam and J. V. Outrata, On optimal control of a sweeping process coupled with an ordinary differential equation,, Discrete Contin. Dyn. Syst.-Ser. B, 19 (2014), 2709.  doi: 10.3934/dcdsb.2014.19.2709.  Google Scholar

[2]

S. Adly, T. Haddad and L. Thibault, Convex sweeping process in the framework of measure differential inclusions and evolution variational inequalities,, Math. Program., 148 (2014), 5.  doi: 10.1007/s10107-014-0754-4.  Google Scholar

[3]

J. M. Borwein and Q. J. Zhu, Techniques of Variational Analysis,, Springer, (2005).   Google Scholar

[4]

M. Brokate and P. Krejčí, Optimal control of ODE systems involving a rate independent variational inequality,, Discrete Contin. Dyn. Syst.-Ser. B, 18 (2013), 331.  doi: 10.3934/dcdsb.2013.18.331.  Google Scholar

[5]

M. Brokate and J. Sprekels, Hysteresis and Phase Transitions,, Springer, (1996).  doi: 10.1007/978-1-4612-4048-8.  Google Scholar

[6]

C. Castaing, M. D. P. Monteiro Marques and P. Raynaud de Fitte, Some problems in optimal control governed by the sweeping process,, J. Nonlinear Convex Anal., 15 (2014), 1043.   Google Scholar

[7]

T. H. Cao and B. S. Mordukhovich, Optimality conditions for a controlled sweeping process with applications to the crowd motion model,, preprint, ().   Google Scholar

[8]

G. Colombo, R. Henrion, N. D. Hoang and B. S. Mordukhovich, Optimal control of the sweeping process,, Dyn. Contin. Discrete Impuls. Syst.-Ser. B, 19 (2012), 117.   Google Scholar

[9]

G. Colombo, R. Henrion, N. D. Hoang and B. S. Mordukhovich, Optimal control of the sweeping process over polyhedral controlled sets,, J. Diff. Eqs., 260 (2016), 3397.  doi: 10.1016/j.jde.2015.10.039.  Google Scholar

[10]

G. Colombo and L. Thibault, Prox-regular sets and applications,, In Y. Gao and D. Motreanu, (2010), 99.   Google Scholar

[11]

T. Donchev, E. Farkhi and B. S. Mordukhovich, Discrete approximations, relaxation, and optimization of one-sided Lipschitzian differential inclusions in Hilbert spaces,, J. Diff. Eqs., 243 (2007), 301.  doi: 10.1016/j.jde.2007.05.011.  Google Scholar

[12]

J. F. Edmond and L. Thibault, Relaxation of an optimal control problem involving a perturbed sweeping process,, Math. Program., 104 (2005), 347.  doi: 10.1007/s10107-005-0619-y.  Google Scholar

[13]

R. Henrion, B. S. Mordukhovich and N. M. Nam, Second-order analysis of polyhedral systems in finite and infinite dimensions with applications to robust stability of variational inequalities,, SIAM J. Optim., 20 (2010), 2199.  doi: 10.1137/090766413.  Google Scholar

[14]

M. A. Krasnosel'skiĭ and A. V. Pokrovskiĭ, Systems with Hysteresis,, Springer, (1989).  doi: 10.1007/978-3-642-61302-9.  Google Scholar

[15]

P. Krečí, Evolution variational inequalities and multidimensional hysteresis operators,, In P. Drabek, (1999), 47.   Google Scholar

[16]

M. Kunze and M. D. P. Monteiro Marques, An introduction to Moreau's sweeping process,, In B. Brogliato, (2000), 1.  doi: 10.1007/3-540-45501-9_1.  Google Scholar

[17]

B. Maury and J. Venel, A mathematical framework for a crowd motion model,, C. R. Acad. Sci. Paris Ser. I, 346 (2008), 1245.  doi: 10.1016/j.crma.2008.10.014.  Google Scholar

[18]

M. D. P. Monteiro Marques, Differential Inclusions in Nonsmooth Mechanical Problems: Shocks and Dry Friction,, Birkhäuser, (1993).  doi: 10.1007/978-3-0348-7614-8.  Google Scholar

[19]

B. S. Mordukhovich, Sensitivity analysis in nonsmooth optimization,, In D. A. Field and V. Komkov, (1992), 32.   Google Scholar

[20]

B. S. Mordukhovich, Discrete approximations and refined Euler-Lagrange conditions for differential inclusions,, SIAM J. Control Optim., 33 (1995), 882.  doi: 10.1137/S0363012993245665.  Google Scholar

[21]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, I: Basic Theory,, Springer, (2006).   Google Scholar

[22]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, II: Applications,, Springer, (2006).   Google Scholar

[23]

J. J. Moreau, On unilateral constraints, friction and plasticity,, In G. Capriz and G. Stampacchia, (1974), 173.   Google Scholar

[24]

J. S. Pang and D. E. Stewart, Differential variational inequalities,, Math. Program., 113 (2008), 345.  doi: 10.1007/s10107-006-0052-x.  Google Scholar

[25]

F. Rindler, Optimal control for nonconvex rate-independent evolution processes,, SIAM J. Control Optim., 47 (2008), 2773.  doi: 10.1137/080718711.  Google Scholar

[26]

F. Rindler, Approximation of rate-independent optimal control problems,, SIAM J. Numer. Anal., 47 (2009), 3884.  doi: 10.1137/080744050.  Google Scholar

[27]

R. T. Rockafellar and R. J.-B. Wets, Variational Analysis,, Springer-Verlag, (1998).  doi: 10.1007/978-3-642-02431-3.  Google Scholar

[28]

A. H. Siddiqi, P. Manchanda and M. Brokate, On some recent developments concerning Moreau's sweeping process,, Trends in Industrial and Applied Mathematics, 72 (2002), 339.  doi: 10.1007/978-1-4613-0263-6_15.  Google Scholar

[29]

D. E. Stewart, Dynamics with Inequalities: Impacts and Hard Constraints,, SIAM, (2011).  doi: 10.1137/1.9781611970715.  Google Scholar

[30]

A. A. Tolstonogov, Differential Inclusions in a Banach Space,, Kluwer, (2000).  doi: 10.1007/978-94-015-9490-5.  Google Scholar

[31]

R. B. Vinter, Optimal Control,, Birkhaüser, (2000).   Google Scholar

show all references

References:
[1]

L. Adam and J. V. Outrata, On optimal control of a sweeping process coupled with an ordinary differential equation,, Discrete Contin. Dyn. Syst.-Ser. B, 19 (2014), 2709.  doi: 10.3934/dcdsb.2014.19.2709.  Google Scholar

[2]

S. Adly, T. Haddad and L. Thibault, Convex sweeping process in the framework of measure differential inclusions and evolution variational inequalities,, Math. Program., 148 (2014), 5.  doi: 10.1007/s10107-014-0754-4.  Google Scholar

[3]

J. M. Borwein and Q. J. Zhu, Techniques of Variational Analysis,, Springer, (2005).   Google Scholar

[4]

M. Brokate and P. Krejčí, Optimal control of ODE systems involving a rate independent variational inequality,, Discrete Contin. Dyn. Syst.-Ser. B, 18 (2013), 331.  doi: 10.3934/dcdsb.2013.18.331.  Google Scholar

[5]

M. Brokate and J. Sprekels, Hysteresis and Phase Transitions,, Springer, (1996).  doi: 10.1007/978-1-4612-4048-8.  Google Scholar

[6]

C. Castaing, M. D. P. Monteiro Marques and P. Raynaud de Fitte, Some problems in optimal control governed by the sweeping process,, J. Nonlinear Convex Anal., 15 (2014), 1043.   Google Scholar

[7]

T. H. Cao and B. S. Mordukhovich, Optimality conditions for a controlled sweeping process with applications to the crowd motion model,, preprint, ().   Google Scholar

[8]

G. Colombo, R. Henrion, N. D. Hoang and B. S. Mordukhovich, Optimal control of the sweeping process,, Dyn. Contin. Discrete Impuls. Syst.-Ser. B, 19 (2012), 117.   Google Scholar

[9]

G. Colombo, R. Henrion, N. D. Hoang and B. S. Mordukhovich, Optimal control of the sweeping process over polyhedral controlled sets,, J. Diff. Eqs., 260 (2016), 3397.  doi: 10.1016/j.jde.2015.10.039.  Google Scholar

[10]

G. Colombo and L. Thibault, Prox-regular sets and applications,, In Y. Gao and D. Motreanu, (2010), 99.   Google Scholar

[11]

T. Donchev, E. Farkhi and B. S. Mordukhovich, Discrete approximations, relaxation, and optimization of one-sided Lipschitzian differential inclusions in Hilbert spaces,, J. Diff. Eqs., 243 (2007), 301.  doi: 10.1016/j.jde.2007.05.011.  Google Scholar

[12]

J. F. Edmond and L. Thibault, Relaxation of an optimal control problem involving a perturbed sweeping process,, Math. Program., 104 (2005), 347.  doi: 10.1007/s10107-005-0619-y.  Google Scholar

[13]

R. Henrion, B. S. Mordukhovich and N. M. Nam, Second-order analysis of polyhedral systems in finite and infinite dimensions with applications to robust stability of variational inequalities,, SIAM J. Optim., 20 (2010), 2199.  doi: 10.1137/090766413.  Google Scholar

[14]

M. A. Krasnosel'skiĭ and A. V. Pokrovskiĭ, Systems with Hysteresis,, Springer, (1989).  doi: 10.1007/978-3-642-61302-9.  Google Scholar

[15]

P. Krečí, Evolution variational inequalities and multidimensional hysteresis operators,, In P. Drabek, (1999), 47.   Google Scholar

[16]

M. Kunze and M. D. P. Monteiro Marques, An introduction to Moreau's sweeping process,, In B. Brogliato, (2000), 1.  doi: 10.1007/3-540-45501-9_1.  Google Scholar

[17]

B. Maury and J. Venel, A mathematical framework for a crowd motion model,, C. R. Acad. Sci. Paris Ser. I, 346 (2008), 1245.  doi: 10.1016/j.crma.2008.10.014.  Google Scholar

[18]

M. D. P. Monteiro Marques, Differential Inclusions in Nonsmooth Mechanical Problems: Shocks and Dry Friction,, Birkhäuser, (1993).  doi: 10.1007/978-3-0348-7614-8.  Google Scholar

[19]

B. S. Mordukhovich, Sensitivity analysis in nonsmooth optimization,, In D. A. Field and V. Komkov, (1992), 32.   Google Scholar

[20]

B. S. Mordukhovich, Discrete approximations and refined Euler-Lagrange conditions for differential inclusions,, SIAM J. Control Optim., 33 (1995), 882.  doi: 10.1137/S0363012993245665.  Google Scholar

[21]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, I: Basic Theory,, Springer, (2006).   Google Scholar

[22]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, II: Applications,, Springer, (2006).   Google Scholar

[23]

J. J. Moreau, On unilateral constraints, friction and plasticity,, In G. Capriz and G. Stampacchia, (1974), 173.   Google Scholar

[24]

J. S. Pang and D. E. Stewart, Differential variational inequalities,, Math. Program., 113 (2008), 345.  doi: 10.1007/s10107-006-0052-x.  Google Scholar

[25]

F. Rindler, Optimal control for nonconvex rate-independent evolution processes,, SIAM J. Control Optim., 47 (2008), 2773.  doi: 10.1137/080718711.  Google Scholar

[26]

F. Rindler, Approximation of rate-independent optimal control problems,, SIAM J. Numer. Anal., 47 (2009), 3884.  doi: 10.1137/080744050.  Google Scholar

[27]

R. T. Rockafellar and R. J.-B. Wets, Variational Analysis,, Springer-Verlag, (1998).  doi: 10.1007/978-3-642-02431-3.  Google Scholar

[28]

A. H. Siddiqi, P. Manchanda and M. Brokate, On some recent developments concerning Moreau's sweeping process,, Trends in Industrial and Applied Mathematics, 72 (2002), 339.  doi: 10.1007/978-1-4613-0263-6_15.  Google Scholar

[29]

D. E. Stewart, Dynamics with Inequalities: Impacts and Hard Constraints,, SIAM, (2011).  doi: 10.1137/1.9781611970715.  Google Scholar

[30]

A. A. Tolstonogov, Differential Inclusions in a Banach Space,, Kluwer, (2000).  doi: 10.1007/978-94-015-9490-5.  Google Scholar

[31]

R. B. Vinter, Optimal Control,, Birkhaüser, (2000).   Google Scholar

[1]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[2]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[3]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[4]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[5]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[6]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[7]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[8]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[9]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[10]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[11]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[12]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[13]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[14]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[15]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[16]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[17]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[18]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[19]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[20]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (67)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]