Citation: |
[1] |
F. Albertini and D. D'Alessandro, Asymptotic stability of continuous-time systems with saturation nonlinearities, Systems & Control Letters, 29 (1996), 175-180.doi: 10.1016/S0167-6911(96)00052-7. |
[2] |
A. Berman and R. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Classics in Applied Mathematics, 9. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994.doi: 10.1137/1.9781611971262. |
[3] |
C. Castillo-Chavez, Z. Feng and W. Huang, On the computation of $R_0$ and its role on global stability, Math. Appr. for Emerg. and Reemerg. Infect. Dis, 125 (2002), 229-250. |
[4] |
H. Freedman, S. Ruan and M. Tang, Uniform persistence and flows near a closed positively invariant set, J. Dynamics & Diff. Equations, 6 (1994), 583-600.doi: 10.1007/BF02218848. |
[5] |
M. Gatto, L. Mari, E. Bertuzzo, R. Casagrandi, L. Righetto, I. Rodriguez-Iturbe and A. Rinaldo, Generalized reproduction numbers and the prediction of patterns in waterborne disease, Proceed. Nat. Acad. of Scienc., 109 (2012), 19703-19708.doi: 10.1073/pnas.1217567109. |
[6] |
Z. Hu, Z. Teng and L. Zhang, Stability and bifurcation analysis in a discrete SIR epidemic model, Mathematics & Computers in Simulation, 97 (2014), 80-93.doi: 10.1016/j.matcom.2013.08.008. |
[7] |
J. P. LaSalle, The Stability of Dynamical Systems, SIAM, Philadelphia, 1976.doi: 10.1137/1.9781611970432. |
[8] |
M. Li, J. Graef, L. Wang and J. Karsai, Global dynamics of a SEIR model with varying total population size, Mathematical Biosciences, 160 (1999), 191-213.doi: 10.1016/S0025-5564(99)00030-9. |
[9] |
J. Rebaza, Dynamics of prey threshold harvesting and refuge, Computational & Applied Mathematics, 236 (2012), 1743-1752.doi: 10.1016/j.cam.2011.10.005. |
[10] |
E. Seneta, Nonnegative Matrices and Markov Chains, Springer-Verlag, New York, 1981.doi: 10.1007/0-387-32792-4. |
[11] |
Z. Shuai and P. van den Driessche, Global stability of infectious disease models using Lyapunov functions, SIAM J. of Applied Mathematics, 73 (2013), 1513-1532.doi: 10.1137/120876642. |
[12] |
J. R. Silvester, Determinants of block matrices, Mathematical Gazette, 84 (2000), 460-467.doi: 10.2307/3620776. |
[13] |
H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, Cambridge, 1995.doi: 10.1017/CBO9780511530043. |
[14] |
J. P. Tian, S. Liao and J. Wang, Analyzing the infection dynamics and control strategies of cholera, Discr. Cont. Dynam. Syst. 2013, Dynamical Systems, Differential Equations and Applications. 9th AIMS Conference. Suppl., (2013), 747-757. |
[15] |
C. Torres Codeço, Endemic and epidemic dynamics of cholera: The role of the aquatic reservoir, BMC Infectious Diseases, 1 (2001), 1-14.doi: 10.1186/1471-2334-1-1. |