-
Previous Article
Computational methods for asynchronous basins
- DCDS-B Home
- This Issue
-
Next Article
Exponential integrability properties of Euler discretization schemes for the Cox--Ingersoll--Ross process
Dynamics of a networked connectivity model of epidemics
1. | Health Science Center at Houston, University of Texas, Houston, TX 77030, United States |
2. | Department of Mathematical Sciences, Clemson University, Clemson, SC 29634, United States |
3. | Cystic Fibrosis Foundation Therapeutics Lab, Bethesda, MD 20814, United States |
4. | Department of Mathematics, Missouri State University, Springfield, MO 65897 |
References:
[1] |
Systems & Control Letters, 29 (1996), 175-180.
doi: 10.1016/S0167-6911(96)00052-7. |
[2] |
Classics in Applied Mathematics, 9. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994.
doi: 10.1137/1.9781611971262. |
[3] |
Math. Appr. for Emerg. and Reemerg. Infect. Dis, 125 (2002), 229-250. |
[4] |
J. Dynamics & Diff. Equations, 6 (1994), 583-600.
doi: 10.1007/BF02218848. |
[5] |
Proceed. Nat. Acad. of Scienc., 109 (2012), 19703-19708.
doi: 10.1073/pnas.1217567109. |
[6] |
Mathematics & Computers in Simulation, 97 (2014), 80-93.
doi: 10.1016/j.matcom.2013.08.008. |
[7] |
SIAM, Philadelphia, 1976.
doi: 10.1137/1.9781611970432. |
[8] |
Mathematical Biosciences, 160 (1999), 191-213.
doi: 10.1016/S0025-5564(99)00030-9. |
[9] |
Computational & Applied Mathematics, 236 (2012), 1743-1752.
doi: 10.1016/j.cam.2011.10.005. |
[10] |
Springer-Verlag, New York, 1981.
doi: 10.1007/0-387-32792-4. |
[11] |
SIAM J. of Applied Mathematics, 73 (2013), 1513-1532.
doi: 10.1137/120876642. |
[12] |
Mathematical Gazette, 84 (2000), 460-467.
doi: 10.2307/3620776. |
[13] |
Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511530043. |
[14] |
Discr. Cont. Dynam. Syst. 2013, Dynamical Systems, Differential Equations and Applications. 9th AIMS Conference. Suppl., (2013), 747-757. |
[15] |
BMC Infectious Diseases, 1 (2001), 1-14.
doi: 10.1186/1471-2334-1-1. |
show all references
References:
[1] |
Systems & Control Letters, 29 (1996), 175-180.
doi: 10.1016/S0167-6911(96)00052-7. |
[2] |
Classics in Applied Mathematics, 9. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994.
doi: 10.1137/1.9781611971262. |
[3] |
Math. Appr. for Emerg. and Reemerg. Infect. Dis, 125 (2002), 229-250. |
[4] |
J. Dynamics & Diff. Equations, 6 (1994), 583-600.
doi: 10.1007/BF02218848. |
[5] |
Proceed. Nat. Acad. of Scienc., 109 (2012), 19703-19708.
doi: 10.1073/pnas.1217567109. |
[6] |
Mathematics & Computers in Simulation, 97 (2014), 80-93.
doi: 10.1016/j.matcom.2013.08.008. |
[7] |
SIAM, Philadelphia, 1976.
doi: 10.1137/1.9781611970432. |
[8] |
Mathematical Biosciences, 160 (1999), 191-213.
doi: 10.1016/S0025-5564(99)00030-9. |
[9] |
Computational & Applied Mathematics, 236 (2012), 1743-1752.
doi: 10.1016/j.cam.2011.10.005. |
[10] |
Springer-Verlag, New York, 1981.
doi: 10.1007/0-387-32792-4. |
[11] |
SIAM J. of Applied Mathematics, 73 (2013), 1513-1532.
doi: 10.1137/120876642. |
[12] |
Mathematical Gazette, 84 (2000), 460-467.
doi: 10.2307/3620776. |
[13] |
Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511530043. |
[14] |
Discr. Cont. Dynam. Syst. 2013, Dynamical Systems, Differential Equations and Applications. 9th AIMS Conference. Suppl., (2013), 747-757. |
[15] |
BMC Infectious Diseases, 1 (2001), 1-14.
doi: 10.1186/1471-2334-1-1. |
[1] |
João Borges de Sousa, Bernardo Maciel, Fernando Lobo Pereira. Sensor systems on networked vehicles. Networks & Heterogeneous Media, 2009, 4 (2) : 223-247. doi: 10.3934/nhm.2009.4.223 |
[2] |
Suoqin Jin, Fang-Xiang Wu, Xiufen Zou. Domain control of nonlinear networked systems and applications to complex disease networks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2169-2206. doi: 10.3934/dcdsb.2017091 |
[3] |
Ahmadreza Argha, Steven W. Su, Lin Ye, Branko G. Celler. Optimal sparse output feedback for networked systems with parametric uncertainties. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 283-295. doi: 10.3934/naco.2019019 |
[4] |
Ying Wu, Zhaohui Yuan, Yanpeng Wu. Optimal tracking control for networked control systems with random time delays and packet dropouts. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1343-1354. doi: 10.3934/jimo.2015.11.1343 |
[5] |
Carlos Castillo-Chavez, Baojun Song. Dynamical Models of Tuberculosis and Their Applications. Mathematical Biosciences & Engineering, 2004, 1 (2) : 361-404. doi: 10.3934/mbe.2004.1.361 |
[6] |
Glenn F. Webb. Individual based models and differential equations models of nosocomial epidemics in hospital intensive care units. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1145-1166. doi: 10.3934/dcdsb.2017056 |
[7] |
H. W. Broer, Renato Vitolo. Dynamical systems modeling of low-frequency variability in low-order atmospheric models. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 401-419. doi: 10.3934/dcdsb.2008.10.401 |
[8] |
Denis de Carvalho Braga, Luis Fernando Mello, Carmen Rocşoreanu, Mihaela Sterpu. Lyapunov coefficients for non-symmetrically coupled identical dynamical systems. Application to coupled advertising models. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 785-803. doi: 10.3934/dcdsb.2009.11.785 |
[9] |
Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595 |
[10] |
Vincenzo Capasso, Sebastian AniȚa. The interplay between models and public health policies: Regional control for a class of spatially structured epidemics (think globally, act locally). Mathematical Biosciences & Engineering, 2018, 15 (1) : 1-20. doi: 10.3934/mbe.2018001 |
[11] |
El Houcein El Abdalaoui, Sylvain Bonnot, Ali Messaoudi, Olivier Sester. On the Fibonacci complex dynamical systems. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2449-2471. doi: 10.3934/dcds.2016.36.2449 |
[12] |
Lianfa He, Hongwen Zheng, Yujun Zhu. Shadowing in random dynamical systems. Discrete & Continuous Dynamical Systems, 2005, 12 (2) : 355-362. doi: 10.3934/dcds.2005.12.355 |
[13] |
Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3093-3108. doi: 10.3934/dcds.2020399 |
[14] |
Fritz Colonius, Marco Spadini. Fundamental semigroups for dynamical systems. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 447-463. doi: 10.3934/dcds.2006.14.447 |
[15] |
John Erik Fornæss. Sustainable dynamical systems. Discrete & Continuous Dynamical Systems, 2003, 9 (6) : 1361-1386. doi: 10.3934/dcds.2003.9.1361 |
[16] |
Vieri Benci, C. Bonanno, Stefano Galatolo, G. Menconi, M. Virgilio. Dynamical systems and computable information. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 935-960. doi: 10.3934/dcdsb.2004.4.935 |
[17] |
Mădălina Roxana Buneci. Morphisms of discrete dynamical systems. Discrete & Continuous Dynamical Systems, 2011, 29 (1) : 91-107. doi: 10.3934/dcds.2011.29.91 |
[18] |
Josiney A. Souza, Tiago A. Pacifico, Hélio V. M. Tozatti. A note on parallelizable dynamical systems. Electronic Research Announcements, 2017, 24: 64-67. doi: 10.3934/era.2017.24.007 |
[19] |
Philippe Marie, Jérôme Rousseau. Recurrence for random dynamical systems. Discrete & Continuous Dynamical Systems, 2011, 30 (1) : 1-16. doi: 10.3934/dcds.2011.30.1 |
[20] |
Tobias Wichtrey. Harmonic limits of dynamical systems. Conference Publications, 2011, 2011 (Special) : 1432-1439. doi: 10.3934/proc.2011.2011.1432 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]