December  2016, 21(10): 3463-3478. doi: 10.3934/dcdsb.2016107

Error estimates of the aggregation-diffusion splitting algorithms for the Keller-Segel equations

1. 

Department of Mathematical Sciences, Tsinghua University, Beijing, 100084

2. 

Department of Physics and Department of Mathematics, Duke University, Durham, NC 27708

Received  December 2015 Revised  September 2016 Published  November 2016

In this paper, we discuss error estimates associated with three different aggregation-diffusion splitting schemes for the Keller-Segel equations. We start with one algorithm based on the Trotter product formula, and we show that the convergence rate is $C\Delta t$, where $\Delta t$ is the time-step size. Secondly, we prove the convergence rate $C\Delta t^2$ for the Strang's splitting. Lastly, we study a splitting scheme with the linear transport approximation, and prove the convergence rate $C\Delta t$.
Citation: Hui Huang, Jian-Guo Liu. Error estimates of the aggregation-diffusion splitting algorithms for the Keller-Segel equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3463-3478. doi: 10.3934/dcdsb.2016107
References:
[1]

J. T. Beale and A. Majda, Rates of convergence for viscous splitting of the Navier-Stokes equations,, Mathematics of Computation, 37 (1981), 243.  doi: 10.1090/S0025-5718-1981-0628693-0.  Google Scholar

[2]

M. Botchev, I.Faragó and Á. Havasi, Testing weighted splitting schemes on a one-column transport-chemistry model,, Large-Scale Scientific Computing, (2014), 295.  doi: 10.1007/978-3-540-24588-9_33.  Google Scholar

[3]

L. C. Evans, Partial Differential Equations,, $2^{nd}$ edition, (2010).  doi: 10.1090/gsm/019.  Google Scholar

[4]

A. Gerisch and J. G. Verwer, Operator splitting and approximate factorization for taxis-diffusion-reaction models,, Applied Numerical Mathematics, 42 (2002), 159.  doi: 10.1016/S0168-9274(01)00148-9.  Google Scholar

[5]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (2001).  doi: 10.1007/978-3-642-61798-0.  Google Scholar

[6]

J. Goodman, Convergence of the random vortex method,, Communications on Pure and Applied Mathematics, 40 (1987), 189.  doi: 10.1002/cpa.3160400204.  Google Scholar

[7]

H. Huang and J.-G. Liu, Error estimate of a random particle blob method for the Keller-Segel equation,, Mathematics of Computation, ().   Google Scholar

[8]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, Journal of Theoretical Biology, 26 (1970), 399.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[9]

D. Lanser, J. G. Blom and J. G. Verwer, Time integration of the shallow water equations in spherical geometry,, Journal of Computational Physics, 171 (2001), 373.  doi: 10.1006/jcph.2001.6802.  Google Scholar

[10]

E. H. Lieb and M. Loss, Analysis,, $2^{nd}$ edition, (2001).  doi: 10.1090/gsm/014.  Google Scholar

[11]

J.-G. Liu, L. Wang and Z. Zhou, Positivity-preserving and asymptotic preserving method for 2D Keller-Segal equations,, Mathematics of Computation, ().   Google Scholar

[12]

A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow,, Cambridge University Press, (2002).  doi: 10.1017/CBO9780511613203.  Google Scholar

[13]

R. I. McLachlan, G. Quispel and W. Reinout, Splitting methods,, Acta Numerica, 11 (2002), 341.  doi: 10.1017/S0962492902000053.  Google Scholar

[14]

F. Müller, Splitting error estimation for micro-physical-multiphase chemical systems in meso-scale air quality models,, Atmospheric Environment, 35 (2001), 5749.  doi: 10.1016/S1352-2310(01)00368-5.  Google Scholar

[15]

B. Perthame, Transport Equations in Biology,, Springer, (2007).  doi: 10.1007/978-3-7643-7842-4.  Google Scholar

[16]

G. D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods,, $3^{rd}$ edition, (1985).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[17]

G. Strang, On the construction and comparison of difference schemes,, SIAM Journal on Numerical Analysis, 5 (1968), 506.  doi: 10.1137/0705041.  Google Scholar

[18]

M. Taylor, Partial Differential Equations II: Qualitative Studies of Linear Equations,, Springer, (2011).  doi: 10.1007/978-1-4419-7052-7.  Google Scholar

[19]

M. Taylor, Partial Differential Equations III: Nonlinear Equations,, Springer, (2011).  doi: 10.1007/978-1-4419-7049-7.  Google Scholar

show all references

References:
[1]

J. T. Beale and A. Majda, Rates of convergence for viscous splitting of the Navier-Stokes equations,, Mathematics of Computation, 37 (1981), 243.  doi: 10.1090/S0025-5718-1981-0628693-0.  Google Scholar

[2]

M. Botchev, I.Faragó and Á. Havasi, Testing weighted splitting schemes on a one-column transport-chemistry model,, Large-Scale Scientific Computing, (2014), 295.  doi: 10.1007/978-3-540-24588-9_33.  Google Scholar

[3]

L. C. Evans, Partial Differential Equations,, $2^{nd}$ edition, (2010).  doi: 10.1090/gsm/019.  Google Scholar

[4]

A. Gerisch and J. G. Verwer, Operator splitting and approximate factorization for taxis-diffusion-reaction models,, Applied Numerical Mathematics, 42 (2002), 159.  doi: 10.1016/S0168-9274(01)00148-9.  Google Scholar

[5]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (2001).  doi: 10.1007/978-3-642-61798-0.  Google Scholar

[6]

J. Goodman, Convergence of the random vortex method,, Communications on Pure and Applied Mathematics, 40 (1987), 189.  doi: 10.1002/cpa.3160400204.  Google Scholar

[7]

H. Huang and J.-G. Liu, Error estimate of a random particle blob method for the Keller-Segel equation,, Mathematics of Computation, ().   Google Scholar

[8]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, Journal of Theoretical Biology, 26 (1970), 399.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[9]

D. Lanser, J. G. Blom and J. G. Verwer, Time integration of the shallow water equations in spherical geometry,, Journal of Computational Physics, 171 (2001), 373.  doi: 10.1006/jcph.2001.6802.  Google Scholar

[10]

E. H. Lieb and M. Loss, Analysis,, $2^{nd}$ edition, (2001).  doi: 10.1090/gsm/014.  Google Scholar

[11]

J.-G. Liu, L. Wang and Z. Zhou, Positivity-preserving and asymptotic preserving method for 2D Keller-Segal equations,, Mathematics of Computation, ().   Google Scholar

[12]

A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow,, Cambridge University Press, (2002).  doi: 10.1017/CBO9780511613203.  Google Scholar

[13]

R. I. McLachlan, G. Quispel and W. Reinout, Splitting methods,, Acta Numerica, 11 (2002), 341.  doi: 10.1017/S0962492902000053.  Google Scholar

[14]

F. Müller, Splitting error estimation for micro-physical-multiphase chemical systems in meso-scale air quality models,, Atmospheric Environment, 35 (2001), 5749.  doi: 10.1016/S1352-2310(01)00368-5.  Google Scholar

[15]

B. Perthame, Transport Equations in Biology,, Springer, (2007).  doi: 10.1007/978-3-7643-7842-4.  Google Scholar

[16]

G. D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods,, $3^{rd}$ edition, (1985).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[17]

G. Strang, On the construction and comparison of difference schemes,, SIAM Journal on Numerical Analysis, 5 (1968), 506.  doi: 10.1137/0705041.  Google Scholar

[18]

M. Taylor, Partial Differential Equations II: Qualitative Studies of Linear Equations,, Springer, (2011).  doi: 10.1007/978-1-4419-7052-7.  Google Scholar

[19]

M. Taylor, Partial Differential Equations III: Nonlinear Equations,, Springer, (2011).  doi: 10.1007/978-1-4419-7049-7.  Google Scholar

[1]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[2]

Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329

[3]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[4]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[5]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[6]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[7]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[8]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[9]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[10]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[11]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[12]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[13]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[14]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[15]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[16]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[17]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[18]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[19]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[20]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]