December  2016, 21(10): 3463-3478. doi: 10.3934/dcdsb.2016107

Error estimates of the aggregation-diffusion splitting algorithms for the Keller-Segel equations

1. 

Department of Mathematical Sciences, Tsinghua University, Beijing, 100084

2. 

Department of Physics and Department of Mathematics, Duke University, Durham, NC 27708

Received  December 2015 Revised  September 2016 Published  November 2016

In this paper, we discuss error estimates associated with three different aggregation-diffusion splitting schemes for the Keller-Segel equations. We start with one algorithm based on the Trotter product formula, and we show that the convergence rate is $C\Delta t$, where $\Delta t$ is the time-step size. Secondly, we prove the convergence rate $C\Delta t^2$ for the Strang's splitting. Lastly, we study a splitting scheme with the linear transport approximation, and prove the convergence rate $C\Delta t$.
Citation: Hui Huang, Jian-Guo Liu. Error estimates of the aggregation-diffusion splitting algorithms for the Keller-Segel equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3463-3478. doi: 10.3934/dcdsb.2016107
References:
[1]

Mathematics of Computation, 37 (1981), 243-259. doi: 10.1090/S0025-5718-1981-0628693-0.  Google Scholar

[2]

Large-Scale Scientific Computing, Volume 2907 of the series Lecture Notes in Computer Science, (2014), 295-302. doi: 10.1007/978-3-540-24588-9_33.  Google Scholar

[3]

$2^{nd}$ edition, American Mathematical Society, 2010. doi: 10.1090/gsm/019.  Google Scholar

[4]

Applied Numerical Mathematics, 42 (2002), 159-176. doi: 10.1016/S0168-9274(01)00148-9.  Google Scholar

[5]

Springer-Verlag, Berlin, 2001. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[6]

Communications on Pure and Applied Mathematics, 40 (1987), 189-220. doi: 10.1002/cpa.3160400204.  Google Scholar

[7]

H. Huang and J.-G. Liu, Error estimate of a random particle blob method for the Keller-Segel equation,, Mathematics of Computation, ().   Google Scholar

[8]

Journal of Theoretical Biology, 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[9]

Journal of Computational Physics, 171 (2001), 373-393. doi: 10.1006/jcph.2001.6802.  Google Scholar

[10]

$2^{nd}$ edition,American Mathematical Society, 2001. doi: 10.1090/gsm/014.  Google Scholar

[11]

J.-G. Liu, L. Wang and Z. Zhou, Positivity-preserving and asymptotic preserving method for 2D Keller-Segal equations,, Mathematics of Computation, ().   Google Scholar

[12]

Cambridge University Press, 2002. doi: 10.1017/CBO9780511613203.  Google Scholar

[13]

Acta Numerica, 11 (2002), 341-434. doi: 10.1017/S0962492902000053.  Google Scholar

[14]

Atmospheric Environment, 35 (2001), 5749-5764. doi: 10.1016/S1352-2310(01)00368-5.  Google Scholar

[15]

Springer, New York, 2007. doi: 10.1007/978-3-7643-7842-4.  Google Scholar

[16]

$3^{rd}$ edition,Oxford University Press, 1985. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[17]

SIAM Journal on Numerical Analysis, 5 (1968), 506-517. doi: 10.1137/0705041.  Google Scholar

[18]

Springer, New York, 2011. doi: 10.1007/978-1-4419-7052-7.  Google Scholar

[19]

Springer, New York, 2011. doi: 10.1007/978-1-4419-7049-7.  Google Scholar

show all references

References:
[1]

Mathematics of Computation, 37 (1981), 243-259. doi: 10.1090/S0025-5718-1981-0628693-0.  Google Scholar

[2]

Large-Scale Scientific Computing, Volume 2907 of the series Lecture Notes in Computer Science, (2014), 295-302. doi: 10.1007/978-3-540-24588-9_33.  Google Scholar

[3]

$2^{nd}$ edition, American Mathematical Society, 2010. doi: 10.1090/gsm/019.  Google Scholar

[4]

Applied Numerical Mathematics, 42 (2002), 159-176. doi: 10.1016/S0168-9274(01)00148-9.  Google Scholar

[5]

Springer-Verlag, Berlin, 2001. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[6]

Communications on Pure and Applied Mathematics, 40 (1987), 189-220. doi: 10.1002/cpa.3160400204.  Google Scholar

[7]

H. Huang and J.-G. Liu, Error estimate of a random particle blob method for the Keller-Segel equation,, Mathematics of Computation, ().   Google Scholar

[8]

Journal of Theoretical Biology, 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[9]

Journal of Computational Physics, 171 (2001), 373-393. doi: 10.1006/jcph.2001.6802.  Google Scholar

[10]

$2^{nd}$ edition,American Mathematical Society, 2001. doi: 10.1090/gsm/014.  Google Scholar

[11]

J.-G. Liu, L. Wang and Z. Zhou, Positivity-preserving and asymptotic preserving method for 2D Keller-Segal equations,, Mathematics of Computation, ().   Google Scholar

[12]

Cambridge University Press, 2002. doi: 10.1017/CBO9780511613203.  Google Scholar

[13]

Acta Numerica, 11 (2002), 341-434. doi: 10.1017/S0962492902000053.  Google Scholar

[14]

Atmospheric Environment, 35 (2001), 5749-5764. doi: 10.1016/S1352-2310(01)00368-5.  Google Scholar

[15]

Springer, New York, 2007. doi: 10.1007/978-3-7643-7842-4.  Google Scholar

[16]

$3^{rd}$ edition,Oxford University Press, 1985. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[17]

SIAM Journal on Numerical Analysis, 5 (1968), 506-517. doi: 10.1137/0705041.  Google Scholar

[18]

Springer, New York, 2011. doi: 10.1007/978-1-4419-7052-7.  Google Scholar

[19]

Springer, New York, 2011. doi: 10.1007/978-1-4419-7049-7.  Google Scholar

[1]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[2]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[3]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[4]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

[5]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3319-3341. doi: 10.3934/dcds.2020407

[6]

Scott Schmieding, Rodrigo Treviño. Random substitution tilings and deviation phenomena. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3869-3902. doi: 10.3934/dcds.2021020

[7]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[8]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[9]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[10]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2891-2905. doi: 10.3934/dcds.2020390

[11]

Yuta Tanoue. Improved Hoeffding inequality for dependent bounded or sub-Gaussian random variables. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 53-60. doi: 10.3934/puqr.2021003

[12]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

[13]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[14]

Xu Pan, Liangchen Wang. Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021064

[15]

Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021071

[16]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[17]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[18]

Lingyu Li, Zhang Chen. Asymptotic behavior of non-autonomous random Ginzburg-Landau equation driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3303-3333. doi: 10.3934/dcdsb.2020233

[19]

Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021107

[20]

Anhui Gu. Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3863-3878. doi: 10.3934/dcdsb.2020266

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]