December  2016, 21(10): 3551-3573. doi: 10.3934/dcdsb.2016110

Global attracting set, exponential decay and stability in distribution of neutral SPDEs driven by additive $\alpha$-stable processes

1. 

School of Mathematical Sciences, Tianjin Normal University, Tianjin 300387, China

2. 

School of Information and Mathematics, Yangtze University, Jingzhou 434023, China

Received  January 2016 Revised  June 2016 Published  November 2016

In this paper, we are concerned with a class of neutral stochastic partial differential equations driven by $\alpha$-stable processes. By combining some stochastic analysis techniques, tools from semigroup theory and delay integral inequalities, we identify the global attracting sets of the equations under investigation. Some sufficient conditions ensuring the exponential decay of mild solutions in the $p$-th moment to the stochastic systems are obtained. Subsequently, by employing a weak convergence approach, we try to establish some stability conditions in distribution of the segment processes of mild solutions to the stochastic systems under consideration. Last, an example is presented to illustrate our theory in the work.
Citation: Kai Liu, Zhi Li. Global attracting set, exponential decay and stability in distribution of neutral SPDEs driven by additive $\alpha$-stable processes. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3551-3573. doi: 10.3934/dcdsb.2016110
References:
[1]

D. Applebaum, Lévy Processes and Stochastic Calculus,, 2nd Edition. Cambridge University Press, (2009).  doi: 10.1017/CBO9780511809781.  Google Scholar

[2]

J. Bao, Z. Hou and C. Yuan, Stability in distribution of neutral stochastic differential delay equations with Markovian switching,, Statist. Probab. Lett., 79 (2009), 1663.  doi: 10.1016/j.spl.2009.04.006.  Google Scholar

[3]

J. Bao and C. Yuan, Numerical analysis for neutral SPDEs driven by $\alpha$-stable processes,, Infinite Dimen. Anal. Quant. Probab. Relat. Topics., 17 (2014).  doi: 10.1142/S0219025714500313.  Google Scholar

[4]

Z. Dong, L. Xu and X. C. Zhang, Invariant measures of stochastic 2D Navier-Stokes equation driven $\alpha$-stable processes,, Elec. Comm. Probab., 16 (2011), 678.  doi: 10.1214/ECP.v16-1664.  Google Scholar

[5]

U. Haagerup, The best constants in the Khintchine inequality,, Studia Math., 70 (1981), 231.   Google Scholar

[6]

N. Ikeda and S. Watanable, Stochastic Differential Equations and Diffusion Processes,, North-Holland, (1981).   Google Scholar

[7]

Y. Liu and J. L. Zhai, A note on time regularity of generalized Ornstein-Uhlenbeck processes with cylindrical stable noise,, C. R. Acad. Sci. Paris, 350 (2012), 97.  doi: 10.1016/j.crma.2011.11.017.  Google Scholar

[8]

S. Long, L. Teng and D. Xu, Global attracting set and stability of stochastic neutral partial functional differential equations with impulses,, Statist. Probab. Lett., 82 (2012), 1699.  doi: 10.1016/j.spl.2012.05.018.  Google Scholar

[9]

S. Mohammed, Stochastic Functional Differential Equation,, Pitman, (1984).   Google Scholar

[10]

A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[11]

E. Priola and J. Zabczyk, Structural properties of semilinear SPDEs driven by cylindrical stable processes,, Probab. Theory Relat. Fields., 149 (2011), 97.  doi: 10.1007/s00440-009-0243-5.  Google Scholar

[12]

G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance,, Chapman & Hall, (1994).   Google Scholar

[13]

K. Sato, Lévy Processes and Infinitely Divisible Distributions,, Cambridge University Press, (1999).   Google Scholar

[14]

F. Y. Wang, Gradient estimate for Ornstein-Uhlenbeck jump processes,, Stoch. Proc. Appl., 121 (2011), 466.  doi: 10.1016/j.spa.2010.12.002.  Google Scholar

[15]

J. Y. Wang and Y. L. Rao, A note on stability of SPDEs driven by $\alpha$-stable noises,, Adv. Difference Equations., 2014 (2014).  doi: 10.1186/1687-1847-2014-98.  Google Scholar

[16]

L. L. Wang and X. C. Zhang, Harnack inequalities for SDEs driven by cylindrical $\alpha$-stable processes,, Potential Anal., 42 (2015), 657.  doi: 10.1007/s11118-014-9451-4.  Google Scholar

[17]

L. Xu, Ergodicity of the stochastic real Ginzburg-Landau equation driven by $\alpha$-stable noise,, Stoch. Proc. Appl., 123 (2013), 3710.  doi: 10.1016/j.spa.2013.05.002.  Google Scholar

[18]

D. Y. Xu and S. J. Long, Attracting and quasi-invariant sets of non-autonomous neural networks with delays,, Neurocomputing, 77 (2012), 222.  doi: 10.1016/j.neucom.2011.09.004.  Google Scholar

[19]

L. G. Xu and D. Y. Xu, $P$-attracting and $p$-invariant sets for a class of impulsive stochastic functional differential equations,, Comput. Math. Appl., 57 (2009), 54.  doi: 10.1016/j.camwa.2008.09.027.  Google Scholar

[20]

Y. C. Zang and J. P. Li, Stability in distribution of neutral stochastic partial differential delay equations driven by $\alpha$-stable process,, Adv. Difference Equations, 13 (2014).   Google Scholar

[21]

X. C. Zhang, Derivative formulas and gradient estimates for SDEs driven by $\alpha$-stable processes,, Stoch. Proc. Appl., 123 (2013), 1213.  doi: 10.1016/j.spa.2012.11.012.  Google Scholar

[22]

Z. H. Zhao and J. G. Jian, Attracting and quasi-invariant sets for BAM neural networks of neutral-type with time-varying and infinite distributed delays,, Neurocomputing., 140 (2014), 265.  doi: 10.1016/j.neucom.2014.03.015.  Google Scholar

show all references

References:
[1]

D. Applebaum, Lévy Processes and Stochastic Calculus,, 2nd Edition. Cambridge University Press, (2009).  doi: 10.1017/CBO9780511809781.  Google Scholar

[2]

J. Bao, Z. Hou and C. Yuan, Stability in distribution of neutral stochastic differential delay equations with Markovian switching,, Statist. Probab. Lett., 79 (2009), 1663.  doi: 10.1016/j.spl.2009.04.006.  Google Scholar

[3]

J. Bao and C. Yuan, Numerical analysis for neutral SPDEs driven by $\alpha$-stable processes,, Infinite Dimen. Anal. Quant. Probab. Relat. Topics., 17 (2014).  doi: 10.1142/S0219025714500313.  Google Scholar

[4]

Z. Dong, L. Xu and X. C. Zhang, Invariant measures of stochastic 2D Navier-Stokes equation driven $\alpha$-stable processes,, Elec. Comm. Probab., 16 (2011), 678.  doi: 10.1214/ECP.v16-1664.  Google Scholar

[5]

U. Haagerup, The best constants in the Khintchine inequality,, Studia Math., 70 (1981), 231.   Google Scholar

[6]

N. Ikeda and S. Watanable, Stochastic Differential Equations and Diffusion Processes,, North-Holland, (1981).   Google Scholar

[7]

Y. Liu and J. L. Zhai, A note on time regularity of generalized Ornstein-Uhlenbeck processes with cylindrical stable noise,, C. R. Acad. Sci. Paris, 350 (2012), 97.  doi: 10.1016/j.crma.2011.11.017.  Google Scholar

[8]

S. Long, L. Teng and D. Xu, Global attracting set and stability of stochastic neutral partial functional differential equations with impulses,, Statist. Probab. Lett., 82 (2012), 1699.  doi: 10.1016/j.spl.2012.05.018.  Google Scholar

[9]

S. Mohammed, Stochastic Functional Differential Equation,, Pitman, (1984).   Google Scholar

[10]

A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[11]

E. Priola and J. Zabczyk, Structural properties of semilinear SPDEs driven by cylindrical stable processes,, Probab. Theory Relat. Fields., 149 (2011), 97.  doi: 10.1007/s00440-009-0243-5.  Google Scholar

[12]

G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance,, Chapman & Hall, (1994).   Google Scholar

[13]

K. Sato, Lévy Processes and Infinitely Divisible Distributions,, Cambridge University Press, (1999).   Google Scholar

[14]

F. Y. Wang, Gradient estimate for Ornstein-Uhlenbeck jump processes,, Stoch. Proc. Appl., 121 (2011), 466.  doi: 10.1016/j.spa.2010.12.002.  Google Scholar

[15]

J. Y. Wang and Y. L. Rao, A note on stability of SPDEs driven by $\alpha$-stable noises,, Adv. Difference Equations., 2014 (2014).  doi: 10.1186/1687-1847-2014-98.  Google Scholar

[16]

L. L. Wang and X. C. Zhang, Harnack inequalities for SDEs driven by cylindrical $\alpha$-stable processes,, Potential Anal., 42 (2015), 657.  doi: 10.1007/s11118-014-9451-4.  Google Scholar

[17]

L. Xu, Ergodicity of the stochastic real Ginzburg-Landau equation driven by $\alpha$-stable noise,, Stoch. Proc. Appl., 123 (2013), 3710.  doi: 10.1016/j.spa.2013.05.002.  Google Scholar

[18]

D. Y. Xu and S. J. Long, Attracting and quasi-invariant sets of non-autonomous neural networks with delays,, Neurocomputing, 77 (2012), 222.  doi: 10.1016/j.neucom.2011.09.004.  Google Scholar

[19]

L. G. Xu and D. Y. Xu, $P$-attracting and $p$-invariant sets for a class of impulsive stochastic functional differential equations,, Comput. Math. Appl., 57 (2009), 54.  doi: 10.1016/j.camwa.2008.09.027.  Google Scholar

[20]

Y. C. Zang and J. P. Li, Stability in distribution of neutral stochastic partial differential delay equations driven by $\alpha$-stable process,, Adv. Difference Equations, 13 (2014).   Google Scholar

[21]

X. C. Zhang, Derivative formulas and gradient estimates for SDEs driven by $\alpha$-stable processes,, Stoch. Proc. Appl., 123 (2013), 1213.  doi: 10.1016/j.spa.2012.11.012.  Google Scholar

[22]

Z. H. Zhao and J. G. Jian, Attracting and quasi-invariant sets for BAM neural networks of neutral-type with time-varying and infinite distributed delays,, Neurocomputing., 140 (2014), 265.  doi: 10.1016/j.neucom.2014.03.015.  Google Scholar

[1]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[2]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[3]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[4]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[5]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[6]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[7]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[8]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[9]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[10]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[11]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[12]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHum approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[13]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[14]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[15]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[16]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[17]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[18]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[19]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[20]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (63)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]