-
Previous Article
Finite-time synchronization of competitive neural networks with mixed delays
- DCDS-B Home
- This Issue
-
Next Article
Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux
Weak stability for integro-differential inclusions of diffusion-wave type involving infinite delays
1. | Vietnam Education Publishing House, 81 Tran Hung Dao, Hanoi, Vietnam |
2. | Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam |
3. | Department of Mathematics, Electric Power University, 235 Hoang Quoc Viet, Hanoi, Vietnam |
References:
[1] |
B. de Andrade and C. Cuevas, $S$-asymptotically $\omega$-periodic and asymptotically $\omega$-periodic solutions to semi-linear Cauchy problems with non-dense domain,, Nonlinear Anal., 72 (2010), 3190.
doi: 10.1016/j.na.2009.12.016. |
[2] |
N. T. Anh and T. D. Ke, Decay integral solutions for neutral fractional differential equations with infinite delays,, Math. Methods Appl. Sci., 38 (2015), 1601.
doi: 10.1002/mma.3172. |
[3] |
E. Bazhlekova, Fractional Evolution Equations in Banach Spaces,, Ph.D. Thesis, (2001). Google Scholar |
[4] |
T. A. Burton, Stability by Fixed Point Theory for Functional Differential Equations,, Dover Publications, (2006).
|
[5] |
T. A. Burton and T. Furumochi, Fixed points and problems in stability theory for ordinary and functional differential equations,, Dyn. Syst. Appl., 10 (2001), 89.
|
[6] |
J. P. Carvalho dos Santos and C. Cuevas, Asymptotically almost automorphic solutions of abstract fractional integro-differential neutral equations,, Appl. Math. Lett., 23 (2010), 960.
doi: 10.1016/j.aml.2010.04.016. |
[7] |
N. M. Chuong, T. D. Ke and N. N. Quan, Stability for a class of fractional partial integro-differential equations,, J. Integral Equations Appl., 26 (2014), 145.
doi: 10.1216/JIE-2014-26-2-145. |
[8] |
C. Cuevas and J. César de Souza, Existence of $S$-asymptotically $\omega$-periodic solutions for fractional order functional integro-differential equations with infinite delay,, Nonlinear Anal., 72 (2010), 1683.
doi: 10.1016/j.na.2009.09.007. |
[9] |
C. Cuevas and J. César de Souza, $S$-asymptotically $\omega$-periodic solutions of semilinear fractional integro-differential equations,, Appl. Math. Lett., 22 (2009), 865.
doi: 10.1016/j.aml.2008.07.013. |
[10] |
E. Cuesta, Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations,, Discrete Contin. Dyn. Syst., (2007), 277.
|
[11] |
J. Diestel, W. M. Ruess and W. Schachermayer, Weak compactness in $L^{1}(\mu, X)$,, Proc. Amer. Math. Soc., 118 (1993), 447.
doi: 10.2307/2160321. |
[12] |
R. D. Driver, Ordinary and Delay Differential Equations,, Springer-Verlag, (1977).
|
[13] |
I. Ekeland and R. Temam, Convex Analysis and Variational Problems,, Society for Industrial and Applied Mathematics (SIAM), (1999).
doi: 10.1137/1.9781611971088. |
[14] |
A. F. Filippov, Differential Equations with Discontinuous Righthand Sides,, Translated from the Russian. Mathematics and its Applications (Soviet Series), (1988).
doi: 10.1007/978-94-015-7793-9. |
[15] |
Y. Fujita, Integrodifferential equation which interpolates the heat equation and the wave equation,, Osaka J. Math., 27 (1990), 309.
|
[16] |
Y. Fujita, Integrodifferential equation which interpolates the heat equation and the wave equation. II,, Osaka J. Math., 27 (1990), 797.
|
[17] |
C. Gori, V. Obukhovskii, M. Ragni and P. Rubbioni, Existence and continuous dependence results for semilinear functional differential inclusions with infinite delay,, Nonlinear Anal., 51 (2002), 765.
doi: 10.1016/S0362-546X(01)00861-6. |
[18] |
J. Hale and J. Kato, Phase space for retarded equations with infinite delay,, Funkcial. Ekvac., 21 (1978), 11.
|
[19] |
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations,, Springer-Verlag, (1993).
doi: 10.1007/978-1-4612-4342-7. |
[20] |
Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay,, Lecture Notes in Mathematics, (1473).
doi: 10.1007/BFb0084432. |
[21] |
M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces,, in: de Gruyter Series in Nonlinear Analysis and Applications, (2001).
doi: 10.1515/9783110870893. |
[22] |
F. Mainardi and P. Paradisi, Fractional diffusive waves,, J. Comput. Acoustics, 9 (2001), 1417.
doi: 10.1142/S0218396X01000826. |
[23] |
R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach,, Phys. Rep., 339 (2000), 1.
doi: 10.1016/S0370-1573(00)00070-3. |
[24] |
R. Metzler and J. Klafter, Accelerating Brownian motion: A fractional dynamics approach to fast diffusion,, Europhys. Lett., 51 (2000), 492.
doi: 10.1209/epl/i2000-00364-5. |
[25] |
J.-S. Pang and D. E. Stewart, Differential variational inequalities,, Math. Program. Ser. A, 113 (2008), 345.
doi: 10.1007/s10107-006-0052-x. |
[26] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983).
doi: 10.1007/978-1-4612-5561-1. |
[27] |
K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems,, J. Math. Anal. Appl., 382 (2011), 426.
doi: 10.1016/j.jmaa.2011.04.058. |
[28] |
T. I. Seidman, Invariance of the reachable set under nonlinear perturbations,, SIAM J. Control Optim., 25 (1987), 1173.
doi: 10.1137/0325064. |
show all references
References:
[1] |
B. de Andrade and C. Cuevas, $S$-asymptotically $\omega$-periodic and asymptotically $\omega$-periodic solutions to semi-linear Cauchy problems with non-dense domain,, Nonlinear Anal., 72 (2010), 3190.
doi: 10.1016/j.na.2009.12.016. |
[2] |
N. T. Anh and T. D. Ke, Decay integral solutions for neutral fractional differential equations with infinite delays,, Math. Methods Appl. Sci., 38 (2015), 1601.
doi: 10.1002/mma.3172. |
[3] |
E. Bazhlekova, Fractional Evolution Equations in Banach Spaces,, Ph.D. Thesis, (2001). Google Scholar |
[4] |
T. A. Burton, Stability by Fixed Point Theory for Functional Differential Equations,, Dover Publications, (2006).
|
[5] |
T. A. Burton and T. Furumochi, Fixed points and problems in stability theory for ordinary and functional differential equations,, Dyn. Syst. Appl., 10 (2001), 89.
|
[6] |
J. P. Carvalho dos Santos and C. Cuevas, Asymptotically almost automorphic solutions of abstract fractional integro-differential neutral equations,, Appl. Math. Lett., 23 (2010), 960.
doi: 10.1016/j.aml.2010.04.016. |
[7] |
N. M. Chuong, T. D. Ke and N. N. Quan, Stability for a class of fractional partial integro-differential equations,, J. Integral Equations Appl., 26 (2014), 145.
doi: 10.1216/JIE-2014-26-2-145. |
[8] |
C. Cuevas and J. César de Souza, Existence of $S$-asymptotically $\omega$-periodic solutions for fractional order functional integro-differential equations with infinite delay,, Nonlinear Anal., 72 (2010), 1683.
doi: 10.1016/j.na.2009.09.007. |
[9] |
C. Cuevas and J. César de Souza, $S$-asymptotically $\omega$-periodic solutions of semilinear fractional integro-differential equations,, Appl. Math. Lett., 22 (2009), 865.
doi: 10.1016/j.aml.2008.07.013. |
[10] |
E. Cuesta, Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations,, Discrete Contin. Dyn. Syst., (2007), 277.
|
[11] |
J. Diestel, W. M. Ruess and W. Schachermayer, Weak compactness in $L^{1}(\mu, X)$,, Proc. Amer. Math. Soc., 118 (1993), 447.
doi: 10.2307/2160321. |
[12] |
R. D. Driver, Ordinary and Delay Differential Equations,, Springer-Verlag, (1977).
|
[13] |
I. Ekeland and R. Temam, Convex Analysis and Variational Problems,, Society for Industrial and Applied Mathematics (SIAM), (1999).
doi: 10.1137/1.9781611971088. |
[14] |
A. F. Filippov, Differential Equations with Discontinuous Righthand Sides,, Translated from the Russian. Mathematics and its Applications (Soviet Series), (1988).
doi: 10.1007/978-94-015-7793-9. |
[15] |
Y. Fujita, Integrodifferential equation which interpolates the heat equation and the wave equation,, Osaka J. Math., 27 (1990), 309.
|
[16] |
Y. Fujita, Integrodifferential equation which interpolates the heat equation and the wave equation. II,, Osaka J. Math., 27 (1990), 797.
|
[17] |
C. Gori, V. Obukhovskii, M. Ragni and P. Rubbioni, Existence and continuous dependence results for semilinear functional differential inclusions with infinite delay,, Nonlinear Anal., 51 (2002), 765.
doi: 10.1016/S0362-546X(01)00861-6. |
[18] |
J. Hale and J. Kato, Phase space for retarded equations with infinite delay,, Funkcial. Ekvac., 21 (1978), 11.
|
[19] |
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations,, Springer-Verlag, (1993).
doi: 10.1007/978-1-4612-4342-7. |
[20] |
Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay,, Lecture Notes in Mathematics, (1473).
doi: 10.1007/BFb0084432. |
[21] |
M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces,, in: de Gruyter Series in Nonlinear Analysis and Applications, (2001).
doi: 10.1515/9783110870893. |
[22] |
F. Mainardi and P. Paradisi, Fractional diffusive waves,, J. Comput. Acoustics, 9 (2001), 1417.
doi: 10.1142/S0218396X01000826. |
[23] |
R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach,, Phys. Rep., 339 (2000), 1.
doi: 10.1016/S0370-1573(00)00070-3. |
[24] |
R. Metzler and J. Klafter, Accelerating Brownian motion: A fractional dynamics approach to fast diffusion,, Europhys. Lett., 51 (2000), 492.
doi: 10.1209/epl/i2000-00364-5. |
[25] |
J.-S. Pang and D. E. Stewart, Differential variational inequalities,, Math. Program. Ser. A, 113 (2008), 345.
doi: 10.1007/s10107-006-0052-x. |
[26] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983).
doi: 10.1007/978-1-4612-5561-1. |
[27] |
K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems,, J. Math. Anal. Appl., 382 (2011), 426.
doi: 10.1016/j.jmaa.2011.04.058. |
[28] |
T. I. Seidman, Invariance of the reachable set under nonlinear perturbations,, SIAM J. Control Optim., 25 (1987), 1173.
doi: 10.1137/0325064. |
[1] |
Roberto Livrea, Salvatore A. Marano. A min-max principle for non-differentiable functions with a weak compactness condition. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1019-1029. doi: 10.3934/cpaa.2009.8.1019 |
[2] |
Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424 |
[3] |
Anna Cima, Armengol Gasull, Víctor Mañosa. Parrondo's dynamic paradox for the stability of non-hyperbolic fixed points. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 889-904. doi: 10.3934/dcds.2018038 |
[4] |
Salvatore A. Marano, Sunra Mosconi. Non-smooth critical point theory on closed convex sets. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1187-1202. doi: 10.3934/cpaa.2014.13.1187 |
[5] |
Chunqing Wu, Patricia J.Y. Wong. Global asymptotical stability of the coexistence fixed point of a Ricker-type competitive model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3255-3266. doi: 10.3934/dcdsb.2015.20.3255 |
[6] |
Nicholas Long. Fixed point shifts of inert involutions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297 |
[7] |
Yakov Krasnov, Alexander Kononovich, Grigory Osharovich. On a structure of the fixed point set of homogeneous maps. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1017-1027. doi: 10.3934/dcdss.2013.6.1017 |
[8] |
Jorge Groisman. Expansive and fixed point free homeomorphisms of the plane. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1709-1721. doi: 10.3934/dcds.2012.32.1709 |
[9] |
Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692 |
[10] |
Luis Hernández-Corbato, Francisco R. Ruiz del Portal. Fixed point indices of planar continuous maps. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2979-2995. doi: 10.3934/dcds.2015.35.2979 |
[11] |
Antonio Garcia. Transition tori near an elliptic-fixed point. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 381-392. doi: 10.3934/dcds.2000.6.381 |
[12] |
Yong Ji, Ercai Chen, Yunping Wang, Cao Zhao. Bowen entropy for fixed-point free flows. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6231-6239. doi: 10.3934/dcds.2019271 |
[13] |
Alain Bensoussan, Miroslav Bulíček, Jens Frehse. Existence and compactness for weak solutions to Bellman systems with critical growth. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1729-1750. doi: 10.3934/dcdsb.2012.17.1729 |
[14] |
Massimiliano Ferrara, Giovanni Molica Bisci, Binlin Zhang. Existence of weak solutions for non-local fractional problems via Morse theory. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2483-2499. doi: 10.3934/dcdsb.2014.19.2483 |
[15] |
Aymen Jbalia. On a logarithmic stability estimate for an inverse heat conduction problem. Mathematical Control & Related Fields, 2019, 9 (2) : 277-287. doi: 10.3934/mcrf.2019014 |
[16] |
Xiangfeng Yang. Stability in measure for uncertain heat equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6533-6540. doi: 10.3934/dcdsb.2019152 |
[17] |
Teck-Cheong Lim. On the largest common fixed point of a commuting family of isotone maps. Conference Publications, 2005, 2005 (Special) : 621-623. doi: 10.3934/proc.2005.2005.621 |
[18] |
Mircea Sofonea, Cezar Avramescu, Andaluzia Matei. A fixed point result with applications in the study of viscoplastic frictionless contact problems. Communications on Pure & Applied Analysis, 2008, 7 (3) : 645-658. doi: 10.3934/cpaa.2008.7.645 |
[19] |
Cleon S. Barroso. The approximate fixed point property in Hausdorff topological vector spaces and applications. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 467-479. doi: 10.3934/dcds.2009.25.467 |
[20] |
Parin Chaipunya, Poom Kumam. Fixed point theorems for cyclic operators with application in Fractional integral inclusions with delays. Conference Publications, 2015, 2015 (special) : 248-257. doi: 10.3934/proc.2015.0248 |
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]