• Previous Article
    Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux
  • DCDS-B Home
  • This Issue
  • Next Article
    Finite-time synchronization of competitive neural networks with mixed delays
December  2016, 21(10): 3637-3654. doi: 10.3934/dcdsb.2016114

Weak stability for integro-differential inclusions of diffusion-wave type involving infinite delays

1. 

Vietnam Education Publishing House, 81 Tran Hung Dao, Hanoi, Vietnam

2. 

Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam

3. 

Department of Mathematics, Electric Power University, 235 Hoang Quoc Viet, Hanoi, Vietnam

Received  November 2015 Revised  August 2016 Published  November 2016

We deal with the Cauchy problem associated with integro-differential inclusions of diffusion-wave type involving infinite delays. Based on the behavior of resolvent operator associated with the linear part, an explicit estimate for solutions will be established. As a consequence, the weak stability of zero solution is proved in case the resolvent operator is asymptotically stable.
Citation: Thanh-Anh Nguyen, Dinh-Ke Tran, Nhu-Quan Nguyen. Weak stability for integro-differential inclusions of diffusion-wave type involving infinite delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3637-3654. doi: 10.3934/dcdsb.2016114
References:
[1]

B. de Andrade and C. Cuevas, $S$-asymptotically $\omega$-periodic and asymptotically $\omega$-periodic solutions to semi-linear Cauchy problems with non-dense domain,, Nonlinear Anal., 72 (2010), 3190. doi: 10.1016/j.na.2009.12.016. Google Scholar

[2]

N. T. Anh and T. D. Ke, Decay integral solutions for neutral fractional differential equations with infinite delays,, Math. Methods Appl. Sci., 38 (2015), 1601. doi: 10.1002/mma.3172. Google Scholar

[3]

E. Bazhlekova, Fractional Evolution Equations in Banach Spaces,, Ph.D. Thesis, (2001). Google Scholar

[4]

T. A. Burton, Stability by Fixed Point Theory for Functional Differential Equations,, Dover Publications, (2006). Google Scholar

[5]

T. A. Burton and T. Furumochi, Fixed points and problems in stability theory for ordinary and functional differential equations,, Dyn. Syst. Appl., 10 (2001), 89. Google Scholar

[6]

J. P. Carvalho dos Santos and C. Cuevas, Asymptotically almost automorphic solutions of abstract fractional integro-differential neutral equations,, Appl. Math. Lett., 23 (2010), 960. doi: 10.1016/j.aml.2010.04.016. Google Scholar

[7]

N. M. Chuong, T. D. Ke and N. N. Quan, Stability for a class of fractional partial integro-differential equations,, J. Integral Equations Appl., 26 (2014), 145. doi: 10.1216/JIE-2014-26-2-145. Google Scholar

[8]

C. Cuevas and J. César de Souza, Existence of $S$-asymptotically $\omega$-periodic solutions for fractional order functional integro-differential equations with infinite delay,, Nonlinear Anal., 72 (2010), 1683. doi: 10.1016/j.na.2009.09.007. Google Scholar

[9]

C. Cuevas and J. César de Souza, $S$-asymptotically $\omega$-periodic solutions of semilinear fractional integro-differential equations,, Appl. Math. Lett., 22 (2009), 865. doi: 10.1016/j.aml.2008.07.013. Google Scholar

[10]

E. Cuesta, Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations,, Discrete Contin. Dyn. Syst., (2007), 277. Google Scholar

[11]

J. Diestel, W. M. Ruess and W. Schachermayer, Weak compactness in $L^{1}(\mu, X)$,, Proc. Amer. Math. Soc., 118 (1993), 447. doi: 10.2307/2160321. Google Scholar

[12]

R. D. Driver, Ordinary and Delay Differential Equations,, Springer-Verlag, (1977). Google Scholar

[13]

I. Ekeland and R. Temam, Convex Analysis and Variational Problems,, Society for Industrial and Applied Mathematics (SIAM), (1999). doi: 10.1137/1.9781611971088. Google Scholar

[14]

A. F. Filippov, Differential Equations with Discontinuous Righthand Sides,, Translated from the Russian. Mathematics and its Applications (Soviet Series), (1988). doi: 10.1007/978-94-015-7793-9. Google Scholar

[15]

Y. Fujita, Integrodifferential equation which interpolates the heat equation and the wave equation,, Osaka J. Math., 27 (1990), 309. Google Scholar

[16]

Y. Fujita, Integrodifferential equation which interpolates the heat equation and the wave equation. II,, Osaka J. Math., 27 (1990), 797. Google Scholar

[17]

C. Gori, V. Obukhovskii, M. Ragni and P. Rubbioni, Existence and continuous dependence results for semilinear functional differential inclusions with infinite delay,, Nonlinear Anal., 51 (2002), 765. doi: 10.1016/S0362-546X(01)00861-6. Google Scholar

[18]

J. Hale and J. Kato, Phase space for retarded equations with infinite delay,, Funkcial. Ekvac., 21 (1978), 11. Google Scholar

[19]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations,, Springer-Verlag, (1993). doi: 10.1007/978-1-4612-4342-7. Google Scholar

[20]

Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay,, Lecture Notes in Mathematics, (1473). doi: 10.1007/BFb0084432. Google Scholar

[21]

M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces,, in: de Gruyter Series in Nonlinear Analysis and Applications, (2001). doi: 10.1515/9783110870893. Google Scholar

[22]

F. Mainardi and P. Paradisi, Fractional diffusive waves,, J. Comput. Acoustics, 9 (2001), 1417. doi: 10.1142/S0218396X01000826. Google Scholar

[23]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach,, Phys. Rep., 339 (2000), 1. doi: 10.1016/S0370-1573(00)00070-3. Google Scholar

[24]

R. Metzler and J. Klafter, Accelerating Brownian motion: A fractional dynamics approach to fast diffusion,, Europhys. Lett., 51 (2000), 492. doi: 10.1209/epl/i2000-00364-5. Google Scholar

[25]

J.-S. Pang and D. E. Stewart, Differential variational inequalities,, Math. Program. Ser. A, 113 (2008), 345. doi: 10.1007/s10107-006-0052-x. Google Scholar

[26]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[27]

K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems,, J. Math. Anal. Appl., 382 (2011), 426. doi: 10.1016/j.jmaa.2011.04.058. Google Scholar

[28]

T. I. Seidman, Invariance of the reachable set under nonlinear perturbations,, SIAM J. Control Optim., 25 (1987), 1173. doi: 10.1137/0325064. Google Scholar

show all references

References:
[1]

B. de Andrade and C. Cuevas, $S$-asymptotically $\omega$-periodic and asymptotically $\omega$-periodic solutions to semi-linear Cauchy problems with non-dense domain,, Nonlinear Anal., 72 (2010), 3190. doi: 10.1016/j.na.2009.12.016. Google Scholar

[2]

N. T. Anh and T. D. Ke, Decay integral solutions for neutral fractional differential equations with infinite delays,, Math. Methods Appl. Sci., 38 (2015), 1601. doi: 10.1002/mma.3172. Google Scholar

[3]

E. Bazhlekova, Fractional Evolution Equations in Banach Spaces,, Ph.D. Thesis, (2001). Google Scholar

[4]

T. A. Burton, Stability by Fixed Point Theory for Functional Differential Equations,, Dover Publications, (2006). Google Scholar

[5]

T. A. Burton and T. Furumochi, Fixed points and problems in stability theory for ordinary and functional differential equations,, Dyn. Syst. Appl., 10 (2001), 89. Google Scholar

[6]

J. P. Carvalho dos Santos and C. Cuevas, Asymptotically almost automorphic solutions of abstract fractional integro-differential neutral equations,, Appl. Math. Lett., 23 (2010), 960. doi: 10.1016/j.aml.2010.04.016. Google Scholar

[7]

N. M. Chuong, T. D. Ke and N. N. Quan, Stability for a class of fractional partial integro-differential equations,, J. Integral Equations Appl., 26 (2014), 145. doi: 10.1216/JIE-2014-26-2-145. Google Scholar

[8]

C. Cuevas and J. César de Souza, Existence of $S$-asymptotically $\omega$-periodic solutions for fractional order functional integro-differential equations with infinite delay,, Nonlinear Anal., 72 (2010), 1683. doi: 10.1016/j.na.2009.09.007. Google Scholar

[9]

C. Cuevas and J. César de Souza, $S$-asymptotically $\omega$-periodic solutions of semilinear fractional integro-differential equations,, Appl. Math. Lett., 22 (2009), 865. doi: 10.1016/j.aml.2008.07.013. Google Scholar

[10]

E. Cuesta, Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations,, Discrete Contin. Dyn. Syst., (2007), 277. Google Scholar

[11]

J. Diestel, W. M. Ruess and W. Schachermayer, Weak compactness in $L^{1}(\mu, X)$,, Proc. Amer. Math. Soc., 118 (1993), 447. doi: 10.2307/2160321. Google Scholar

[12]

R. D. Driver, Ordinary and Delay Differential Equations,, Springer-Verlag, (1977). Google Scholar

[13]

I. Ekeland and R. Temam, Convex Analysis and Variational Problems,, Society for Industrial and Applied Mathematics (SIAM), (1999). doi: 10.1137/1.9781611971088. Google Scholar

[14]

A. F. Filippov, Differential Equations with Discontinuous Righthand Sides,, Translated from the Russian. Mathematics and its Applications (Soviet Series), (1988). doi: 10.1007/978-94-015-7793-9. Google Scholar

[15]

Y. Fujita, Integrodifferential equation which interpolates the heat equation and the wave equation,, Osaka J. Math., 27 (1990), 309. Google Scholar

[16]

Y. Fujita, Integrodifferential equation which interpolates the heat equation and the wave equation. II,, Osaka J. Math., 27 (1990), 797. Google Scholar

[17]

C. Gori, V. Obukhovskii, M. Ragni and P. Rubbioni, Existence and continuous dependence results for semilinear functional differential inclusions with infinite delay,, Nonlinear Anal., 51 (2002), 765. doi: 10.1016/S0362-546X(01)00861-6. Google Scholar

[18]

J. Hale and J. Kato, Phase space for retarded equations with infinite delay,, Funkcial. Ekvac., 21 (1978), 11. Google Scholar

[19]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations,, Springer-Verlag, (1993). doi: 10.1007/978-1-4612-4342-7. Google Scholar

[20]

Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay,, Lecture Notes in Mathematics, (1473). doi: 10.1007/BFb0084432. Google Scholar

[21]

M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces,, in: de Gruyter Series in Nonlinear Analysis and Applications, (2001). doi: 10.1515/9783110870893. Google Scholar

[22]

F. Mainardi and P. Paradisi, Fractional diffusive waves,, J. Comput. Acoustics, 9 (2001), 1417. doi: 10.1142/S0218396X01000826. Google Scholar

[23]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach,, Phys. Rep., 339 (2000), 1. doi: 10.1016/S0370-1573(00)00070-3. Google Scholar

[24]

R. Metzler and J. Klafter, Accelerating Brownian motion: A fractional dynamics approach to fast diffusion,, Europhys. Lett., 51 (2000), 492. doi: 10.1209/epl/i2000-00364-5. Google Scholar

[25]

J.-S. Pang and D. E. Stewart, Differential variational inequalities,, Math. Program. Ser. A, 113 (2008), 345. doi: 10.1007/s10107-006-0052-x. Google Scholar

[26]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[27]

K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems,, J. Math. Anal. Appl., 382 (2011), 426. doi: 10.1016/j.jmaa.2011.04.058. Google Scholar

[28]

T. I. Seidman, Invariance of the reachable set under nonlinear perturbations,, SIAM J. Control Optim., 25 (1987), 1173. doi: 10.1137/0325064. Google Scholar

[1]

Roberto Livrea, Salvatore A. Marano. A min-max principle for non-differentiable functions with a weak compactness condition. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1019-1029. doi: 10.3934/cpaa.2009.8.1019

[2]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424

[3]

Anna Cima, Armengol Gasull, Víctor Mañosa. Parrondo's dynamic paradox for the stability of non-hyperbolic fixed points. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 889-904. doi: 10.3934/dcds.2018038

[4]

Salvatore A. Marano, Sunra Mosconi. Non-smooth critical point theory on closed convex sets. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1187-1202. doi: 10.3934/cpaa.2014.13.1187

[5]

Chunqing Wu, Patricia J.Y. Wong. Global asymptotical stability of the coexistence fixed point of a Ricker-type competitive model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3255-3266. doi: 10.3934/dcdsb.2015.20.3255

[6]

Nicholas Long. Fixed point shifts of inert involutions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297

[7]

Yakov Krasnov, Alexander Kononovich, Grigory Osharovich. On a structure of the fixed point set of homogeneous maps. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1017-1027. doi: 10.3934/dcdss.2013.6.1017

[8]

Jorge Groisman. Expansive and fixed point free homeomorphisms of the plane. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1709-1721. doi: 10.3934/dcds.2012.32.1709

[9]

Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692

[10]

Luis Hernández-Corbato, Francisco R. Ruiz del Portal. Fixed point indices of planar continuous maps. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2979-2995. doi: 10.3934/dcds.2015.35.2979

[11]

Antonio Garcia. Transition tori near an elliptic-fixed point. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 381-392. doi: 10.3934/dcds.2000.6.381

[12]

Alain Bensoussan, Miroslav Bulíček, Jens Frehse. Existence and compactness for weak solutions to Bellman systems with critical growth. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1729-1750. doi: 10.3934/dcdsb.2012.17.1729

[13]

Massimiliano Ferrara, Giovanni Molica Bisci, Binlin Zhang. Existence of weak solutions for non-local fractional problems via Morse theory. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2483-2499. doi: 10.3934/dcdsb.2014.19.2483

[14]

Aymen Jbalia. On a logarithmic stability estimate for an inverse heat conduction problem. Mathematical Control & Related Fields, 2019, 9 (2) : 277-287. doi: 10.3934/mcrf.2019014

[15]

Xiangfeng Yang. Stability in measure for uncertain heat equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-8. doi: 10.3934/dcdsb.2019152

[16]

Teck-Cheong Lim. On the largest common fixed point of a commuting family of isotone maps. Conference Publications, 2005, 2005 (Special) : 621-623. doi: 10.3934/proc.2005.2005.621

[17]

Mircea Sofonea, Cezar Avramescu, Andaluzia Matei. A fixed point result with applications in the study of viscoplastic frictionless contact problems. Communications on Pure & Applied Analysis, 2008, 7 (3) : 645-658. doi: 10.3934/cpaa.2008.7.645

[18]

Cleon S. Barroso. The approximate fixed point property in Hausdorff topological vector spaces and applications. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 467-479. doi: 10.3934/dcds.2009.25.467

[19]

Parin Chaipunya, Poom Kumam. Fixed point theorems for cyclic operators with application in Fractional integral inclusions with delays. Conference Publications, 2015, 2015 (special) : 248-257. doi: 10.3934/proc.2015.0248

[20]

Dou Dou, Meng Fan, Hua Qiu. Topological entropy on subsets for fixed-point free flows. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6319-6331. doi: 10.3934/dcds.2017273

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]