-
Previous Article
The steady state solutions to thermohaline circulation equations
- DCDS-B Home
- This Issue
-
Next Article
Finite-time synchronization of competitive neural networks with mixed delays
On the upper semicontinuity of pullback attractors for multi-valued noncompact random dynamical systems
1. | School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou 730000 |
References:
[1] |
Ann. Polon. Math., 111 (2014), 271-295.
doi: 10.4064/ap111-3-5. |
[2] |
Springer-Verlag, New York, Berlin, 1998.
doi: 10.1007/978-3-662-12878-7. |
[3] |
Birkhäuser, Bosten, Basel, Berlin, 1990. |
[4] |
J. Differ. Equ., 246 (2009), 845-869.
doi: 10.1016/j.jde.2008.05.017. |
[5] |
Set-Valued Anal., 11 (2003), 153-201.
doi: 10.1023/A:1022902802385. |
[6] |
Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 491-513. |
[7] |
Discrete Contin. Dyn. Syst., 21 (2008), 415-443.
doi: 10.3934/dcds.2008.21.415. |
[8] |
Discrete Contin. Dyn. Syst., 14 (2010), 439-455.
doi: 10.3934/dcdsb.2010.14.439. |
[9] |
American Mathematical Society, Providence, RI, 2002. |
[10] |
Springer-Verlag, New York, 2002.
doi: 10.1007/b83277. |
[11] |
Set-Valued Var. Anal., 21 (2013), 127-149.
doi: 10.1007/s11228-012-0215-2. |
[12] |
SIAM J. Math. Anal., 47 (2015), 1530-1561.
doi: 10.1137/140978995. |
[13] |
J. Dynam. Differ. Equ., 9 (1997), 307-341.
doi: 10.1007/BF02219225. |
[14] |
De Gruyter, Berlin, 1992.
doi: 10.1515/9783110874228. |
[15] |
Ann. Probab., 31 (2003), 2109-2135.
doi: 10.1214/aop/1068646380. |
[16] |
Stoch. Stoch. Rep., 59 (1996), 21-45.
doi: 10.1080/17442509608834083. |
[17] |
J. Differ. Equ., 123 (1995), 56-92.
doi: 10.1006/jdeq.1995.1157. |
[18] |
Abstr. Appl. Anal., 5 (2000), 33-46.
doi: 10.1155/S1085337500000191. |
[19] |
Systems Control Lett., 33 (1998), 275-280.
doi: 10.1016/S0167-6911(97)00107-2. |
[20] |
Bull. Austral. Math. Soc., 73 (2006), 299-306.
doi: 10.1017/S0004972700038880. |
[21] |
Proceedings of the Royal Society of London, 463 (2007), 163-181.
doi: 10.1098/rspa.2006.1753. |
[22] |
Set-Valued Anal., 16 (2008), 651-671.
doi: 10.1007/s11228-007-0054-8. |
[23] |
Indiana Univ. Math. J., 51 (2002), 1541-1559.
doi: 10.1512/iumj.2002.51.2255. |
[24] |
Set-Valued Anal., 6 (1998), 83-111.
doi: 10.1023/A:1008608431399. |
[25] |
Set-Valued Anal., 8 (2000), 375-403.
doi: 10.1023/A:1026514727329. |
[26] |
J. Dynam. Differential Equations, 20 (2008), 133-164.
doi: 10.1007/s10884-007-9089-7. |
[27] |
2nd Edition, Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0645-3. |
[28] |
Electron. J. Differ. Equ., 139 (2009), 1-18. |
[29] |
J. Differ. Equ., 253 (2012), 1544-1583.
doi: 10.1016/j.jde.2012.05.015. |
[30] |
J. Math. Phys., 54 (2013), 082703, 25 pp.
doi: 10.1063/1.4817862. |
[31] |
SIAM J. Appl. Dyn. Syst., 14 (2015), 1018-1047.
doi: 10.1137/140991819. |
[32] |
J. Math. Phys., 51 (2010), 022701, 12 pp.
doi: 10.1063/1.3277152. |
[33] |
J. Differ. Equ., 232 (2007), 573-622.
doi: 10.1016/j.jde.2006.07.005. |
[34] |
Quarterly of Applied Mathematics, 71 (2013), 369-399.
doi: 10.1090/S0033-569X-2013-01306-1. |
[35] |
J. Differ. Equ., 259 (2015), 728-776.
doi: 10.1016/j.jde.2015.02.026. |
[36] |
J. Dynam. Differential Equations, 24 (2012), 495-520.
doi: 10.1007/s10884-012-9252-7. |
[37] |
Discrete Contin. Dyn. Syst., 34 (2014), 301-333.
doi: 10.3934/dcds.2014.34.301. |
[38] |
J. Differ. Equ., 223 (2006), 367-399.
doi: 10.1016/j.jde.2005.06.008. |
[39] |
Nonlinear Anal. TMA, 75 (2012), 485-502.
doi: 10.1016/j.na.2011.08.050. |
[40] |
Nonlinear Anal. TMA, 75 (2012), 2793-2805.
doi: 10.1016/j.na.2011.11.022. |
show all references
References:
[1] |
Ann. Polon. Math., 111 (2014), 271-295.
doi: 10.4064/ap111-3-5. |
[2] |
Springer-Verlag, New York, Berlin, 1998.
doi: 10.1007/978-3-662-12878-7. |
[3] |
Birkhäuser, Bosten, Basel, Berlin, 1990. |
[4] |
J. Differ. Equ., 246 (2009), 845-869.
doi: 10.1016/j.jde.2008.05.017. |
[5] |
Set-Valued Anal., 11 (2003), 153-201.
doi: 10.1023/A:1022902802385. |
[6] |
Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 491-513. |
[7] |
Discrete Contin. Dyn. Syst., 21 (2008), 415-443.
doi: 10.3934/dcds.2008.21.415. |
[8] |
Discrete Contin. Dyn. Syst., 14 (2010), 439-455.
doi: 10.3934/dcdsb.2010.14.439. |
[9] |
American Mathematical Society, Providence, RI, 2002. |
[10] |
Springer-Verlag, New York, 2002.
doi: 10.1007/b83277. |
[11] |
Set-Valued Var. Anal., 21 (2013), 127-149.
doi: 10.1007/s11228-012-0215-2. |
[12] |
SIAM J. Math. Anal., 47 (2015), 1530-1561.
doi: 10.1137/140978995. |
[13] |
J. Dynam. Differ. Equ., 9 (1997), 307-341.
doi: 10.1007/BF02219225. |
[14] |
De Gruyter, Berlin, 1992.
doi: 10.1515/9783110874228. |
[15] |
Ann. Probab., 31 (2003), 2109-2135.
doi: 10.1214/aop/1068646380. |
[16] |
Stoch. Stoch. Rep., 59 (1996), 21-45.
doi: 10.1080/17442509608834083. |
[17] |
J. Differ. Equ., 123 (1995), 56-92.
doi: 10.1006/jdeq.1995.1157. |
[18] |
Abstr. Appl. Anal., 5 (2000), 33-46.
doi: 10.1155/S1085337500000191. |
[19] |
Systems Control Lett., 33 (1998), 275-280.
doi: 10.1016/S0167-6911(97)00107-2. |
[20] |
Bull. Austral. Math. Soc., 73 (2006), 299-306.
doi: 10.1017/S0004972700038880. |
[21] |
Proceedings of the Royal Society of London, 463 (2007), 163-181.
doi: 10.1098/rspa.2006.1753. |
[22] |
Set-Valued Anal., 16 (2008), 651-671.
doi: 10.1007/s11228-007-0054-8. |
[23] |
Indiana Univ. Math. J., 51 (2002), 1541-1559.
doi: 10.1512/iumj.2002.51.2255. |
[24] |
Set-Valued Anal., 6 (1998), 83-111.
doi: 10.1023/A:1008608431399. |
[25] |
Set-Valued Anal., 8 (2000), 375-403.
doi: 10.1023/A:1026514727329. |
[26] |
J. Dynam. Differential Equations, 20 (2008), 133-164.
doi: 10.1007/s10884-007-9089-7. |
[27] |
2nd Edition, Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0645-3. |
[28] |
Electron. J. Differ. Equ., 139 (2009), 1-18. |
[29] |
J. Differ. Equ., 253 (2012), 1544-1583.
doi: 10.1016/j.jde.2012.05.015. |
[30] |
J. Math. Phys., 54 (2013), 082703, 25 pp.
doi: 10.1063/1.4817862. |
[31] |
SIAM J. Appl. Dyn. Syst., 14 (2015), 1018-1047.
doi: 10.1137/140991819. |
[32] |
J. Math. Phys., 51 (2010), 022701, 12 pp.
doi: 10.1063/1.3277152. |
[33] |
J. Differ. Equ., 232 (2007), 573-622.
doi: 10.1016/j.jde.2006.07.005. |
[34] |
Quarterly of Applied Mathematics, 71 (2013), 369-399.
doi: 10.1090/S0033-569X-2013-01306-1. |
[35] |
J. Differ. Equ., 259 (2015), 728-776.
doi: 10.1016/j.jde.2015.02.026. |
[36] |
J. Dynam. Differential Equations, 24 (2012), 495-520.
doi: 10.1007/s10884-012-9252-7. |
[37] |
Discrete Contin. Dyn. Syst., 34 (2014), 301-333.
doi: 10.3934/dcds.2014.34.301. |
[38] |
J. Differ. Equ., 223 (2006), 367-399.
doi: 10.1016/j.jde.2005.06.008. |
[39] |
Nonlinear Anal. TMA, 75 (2012), 485-502.
doi: 10.1016/j.na.2011.08.050. |
[40] |
Nonlinear Anal. TMA, 75 (2012), 2793-2805.
doi: 10.1016/j.na.2011.11.022. |
[1] |
Mohamed Ouzahra. Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021081 |
[2] |
Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021107 |
[3] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021005 |
[4] |
Matheus C. Bortolan, José Manuel Uzal. Upper and weak-lower semicontinuity of pullback attractors to impulsive evolution processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3667-3692. doi: 10.3934/dcdsb.2020252 |
[5] |
Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024 |
[6] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[7] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[8] |
Jihoon Lee, Nguyen Thanh Nguyen. Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1263-1296. doi: 10.3934/cpaa.2021020 |
[9] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
[10] |
Weihua Jiang, Xun Cao, Chuncheng Wang. Turing instability and pattern formations for reaction-diffusion systems on 2D bounded domain. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021085 |
[11] |
Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249 |
[12] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[13] |
Bo Duan, Zhengce Zhang. A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021067 |
[14] |
Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3109-3140. doi: 10.3934/dcds.2020400 |
[15] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[16] |
Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021031 |
[17] |
Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043 |
[18] |
Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190 |
[19] |
Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021073 |
[20] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, 2021, 14 (2) : 211-255. doi: 10.3934/krm.2021003 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]