December  2016, 21(10): 3723-3742. doi: 10.3934/dcdsb.2016118

Traveling waves in an SEIR epidemic model with the variable total population

1. 

School of Mathematical Sciences, South China Normal University, Guangzhou, Guangdong 510631

Received  December 2015 Revised  February 2016 Published  November 2016

In the present paper, we propose a simple diffusive SEIR epidemic model where the total population is variable. We first give the explicit formula of the basic reproduction number $\mathcal{R}_0$ for the model. And hence, we show that if $\mathcal{R}_0>1$, then there exists a constant $c^*>0$ such that for any $c>c^*$, the model admits a nontrivial traveling wave solution, and if $\mathcal{R}_0<1$ and $c>0$ (or, $\mathcal{R}_0>1$ and $c\in(0,c^*)$), then the model has no nontrivial traveling wave solution. Consequently, we obtain the full information about the existence and non-existence of traveling wave solutions of the model by determined by the constants $\mathcal{R}_0$ and $c^*$. The proof of the main results is mainly based on Schauder fixed point theorem and Laplace transform.
Citation: Zhiting Xu. Traveling waves in an SEIR epidemic model with the variable total population. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3723-3742. doi: 10.3934/dcdsb.2016118
References:
[1]

Z. Bai and S.-L. Wu, Traveling waves in a delayed SIR epidemic model with nonlinear incidence,, Appl. Math. Comput., 263 (2015), 221.  doi: 10.1016/j.amc.2015.04.048.  Google Scholar

[2]

Z. Bai and S. Zhang, Traveling waves of a diffusive SIR epidemic model with a class of nonlinear incidence rates and distributed delay,, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 1370.  doi: 10.1016/j.cnsns.2014.07.005.  Google Scholar

[3]

H. Berestycki, F. Hamel, A. Kiselev and L. Ryzhik, Quenching and propagation in KPP reaction-diffusion equations with a heat loss,, Arch. Ration. Mech. Anal., 178 (2005), 57.  doi: 10.1007/s00205-005-0367-4.  Google Scholar

[4]

F. Braner and C. Castillo-Chávez, Mathematical Models in Population Biology and Epidemiology,, Springer, (2001).  doi: 10.1007/978-1-4757-3516-1.  Google Scholar

[5]

J. Carr and A. Chmaj, Uniquence of the traveling waves for nonlocal monostable equations,, Proc. Amer. Math. Soc., 132 (2004), 2433.  doi: 10.1090/S0002-9939-04-07432-5.  Google Scholar

[6]

J. Fang and X.-Q. Zhao, Monotone wavefronts for partially degenerate reaction-diffusion systems,, J. Dyn. Diff. Equat., 21 (2009), 663.  doi: 10.1007/s10884-009-9152-7.  Google Scholar

[7]

S.-C. Fu, Traveling waves for a diffusive SIR model with delay,, J. Math. Anal. Appl., 435 (2016), 20.  doi: 10.1016/j.jmaa.2015.09.069.  Google Scholar

[8]

H. W. Hethcote, The mathematics of infectious diseases,, SIAM Review, 42 (2000), 599.  doi: 10.1137/S0036144500371907.  Google Scholar

[9]

Y. Hosono and B. Ilyas, Traveling waves for a simple diffusive epidemic model,, Math. Models. Methods Appl. Sci., 5 (1995), 935.  doi: 10.1142/S0218202595000504.  Google Scholar

[10]

C.-H. Hsu and T.-S. Yang, Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models,, Nonlinearity, 26 (2013), 121.  doi: 10.1088/0951-7715/26/1/121.  Google Scholar

[11]

W. O. Kermack and A. G. McKendrick, Contribution to the mathematical theory of epidemics,, Proc. R. Soc. Lond., 115 (1927), 700.   Google Scholar

[12]

W.-T. Li, G. Lin, C. Ma and F.-Y. Yang, Travelling wave solutions of a nonlocal delayed SIR model with outbreak threshold,, Discrete Contin. Dyn. Sys., 19 (2014), 467.  doi: 10.3934/dcdsb.2014.19.467.  Google Scholar

[13]

J. D. Murray, Mathematical Biology, I and II, third edition., Springer, (2002).   Google Scholar

[14]

L. Perko, Differential Equations and Dynamical Systems,, third edition, (2001).  doi: 10.1007/978-1-4613-0003-8.  Google Scholar

[15]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models,, J. Differential Equations, 195 (2003), 430.  doi: 10.1016/S0022-0396(03)00175-X.  Google Scholar

[16]

H. Wang, Spreading speeds and traveling waves for non-cooperative reaction-diffusion stsyems,, J. Nonlinear Sciences, 21 (2011), 747.  doi: 10.1007/s00332-011-9099-9.  Google Scholar

[17]

H. Wang and X.-S. Wang, Travelling waves phenomena in a Kermack-McKendrick SIR model,, J. Dyn. Diff. Equat., 28 (2016), 143.  doi: 10.1007/s10884-015-9506-2.  Google Scholar

[18]

W. Wang and X.-Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission,, SIAM J. Appl. Math., 71 (2011), 147.  doi: 10.1137/090775890.  Google Scholar

[19]

X.-S. Wang, H. Wang and J. Wu, Travelling waves of diffusive predator-prey systems: Disease outbreak propagation,, Discrete Contin. Dyn. Sys., 32 (2012), 3303.  doi: 10.3934/dcds.2012.32.3303.  Google Scholar

[20]

Z.-C. Wang and J. Wu, Travelling waves of a diffusive Kermack-McKendrick epidemic model with non-local delayed transmission,, Proc. R. Soc., 466 (2010), 237.  doi: 10.1098/rspa.2009.0377.  Google Scholar

[21]

P. Weng and X.-Q. Zhao, Spreading speed and traveling waves for a multi-type SIS epidemics model,, J. Differential Equations, 229 (2006), 270.  doi: 10.1016/j.jde.2006.01.020.  Google Scholar

[22]

S.-L. Wu and C.-H. Hsu, Existence of entire solutions for delayed monostable epidemic models,, Trans. Amer. Math. Soc., 368 (2016), 6033.  doi: 10.1090/tran/6526.  Google Scholar

[23]

S.-L. Wu, C.-H. Hsu and Y. Xiao, Global attractivity, spreading speeds and traveling wave of delayed nonlocal reaction-diffusion systems,, J. Differential Equations, 258 (2015), 1058.  doi: 10.1016/j.jde.2014.10.009.  Google Scholar

[24]

Z. Xu, Traveling waves in a Kermack-Mckendrick epidemic model with diffusion and latent period,, Nonlinear Analysis, 111 (2014), 66.  doi: 10.1016/j.na.2014.08.012.  Google Scholar

[25]

Z. Xu, Traveling waves for a diffusive SEIR epidemic model,, Commun. Pure Appl. Anal. 15 (2016), 15 (2016), 871.  doi: 10.3934/cpaa.2016.15.871.  Google Scholar

[26]

Z. Xu, C. Ai, Traveling waves in a diffusive influenza epidemic model with vaccination,, Appl. Math. Modelling. 40 (2016), 40 (2016), 7265.  doi: 10.1016/j.apm.2016.03.021.  Google Scholar

[27]

F.-Y. Yang, Y. Li, W.-T. Li and Z.-C. Wang, Traveling waves in a nonlocal dispersal Kermack-Mckendrick epidmic model,, Discrete Contin. Dyn. Sys., 18 (2013), 1969.  doi: 10.3934/dcdsb.2013.18.1969.  Google Scholar

[28]

F.-Y. Yang, Y. Li, W.-T. Li and Z.-C. Wang, Traveling waves in a nonlocal dispersal SIR epidmic model,, Nonlinear Analysis: Real World Applications, 23 (2015), 129.  doi: 10.1016/j.nonrwa.2014.12.001.  Google Scholar

[29]

T. Zhang and W. Wang, Existence of thaveling wave solutions for influenza model with treatment,, J. Math. Anal. Appl., 419 (2014), 469.  doi: 10.1016/j.jmaa.2014.04.068.  Google Scholar

show all references

References:
[1]

Z. Bai and S.-L. Wu, Traveling waves in a delayed SIR epidemic model with nonlinear incidence,, Appl. Math. Comput., 263 (2015), 221.  doi: 10.1016/j.amc.2015.04.048.  Google Scholar

[2]

Z. Bai and S. Zhang, Traveling waves of a diffusive SIR epidemic model with a class of nonlinear incidence rates and distributed delay,, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 1370.  doi: 10.1016/j.cnsns.2014.07.005.  Google Scholar

[3]

H. Berestycki, F. Hamel, A. Kiselev and L. Ryzhik, Quenching and propagation in KPP reaction-diffusion equations with a heat loss,, Arch. Ration. Mech. Anal., 178 (2005), 57.  doi: 10.1007/s00205-005-0367-4.  Google Scholar

[4]

F. Braner and C. Castillo-Chávez, Mathematical Models in Population Biology and Epidemiology,, Springer, (2001).  doi: 10.1007/978-1-4757-3516-1.  Google Scholar

[5]

J. Carr and A. Chmaj, Uniquence of the traveling waves for nonlocal monostable equations,, Proc. Amer. Math. Soc., 132 (2004), 2433.  doi: 10.1090/S0002-9939-04-07432-5.  Google Scholar

[6]

J. Fang and X.-Q. Zhao, Monotone wavefronts for partially degenerate reaction-diffusion systems,, J. Dyn. Diff. Equat., 21 (2009), 663.  doi: 10.1007/s10884-009-9152-7.  Google Scholar

[7]

S.-C. Fu, Traveling waves for a diffusive SIR model with delay,, J. Math. Anal. Appl., 435 (2016), 20.  doi: 10.1016/j.jmaa.2015.09.069.  Google Scholar

[8]

H. W. Hethcote, The mathematics of infectious diseases,, SIAM Review, 42 (2000), 599.  doi: 10.1137/S0036144500371907.  Google Scholar

[9]

Y. Hosono and B. Ilyas, Traveling waves for a simple diffusive epidemic model,, Math. Models. Methods Appl. Sci., 5 (1995), 935.  doi: 10.1142/S0218202595000504.  Google Scholar

[10]

C.-H. Hsu and T.-S. Yang, Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models,, Nonlinearity, 26 (2013), 121.  doi: 10.1088/0951-7715/26/1/121.  Google Scholar

[11]

W. O. Kermack and A. G. McKendrick, Contribution to the mathematical theory of epidemics,, Proc. R. Soc. Lond., 115 (1927), 700.   Google Scholar

[12]

W.-T. Li, G. Lin, C. Ma and F.-Y. Yang, Travelling wave solutions of a nonlocal delayed SIR model with outbreak threshold,, Discrete Contin. Dyn. Sys., 19 (2014), 467.  doi: 10.3934/dcdsb.2014.19.467.  Google Scholar

[13]

J. D. Murray, Mathematical Biology, I and II, third edition., Springer, (2002).   Google Scholar

[14]

L. Perko, Differential Equations and Dynamical Systems,, third edition, (2001).  doi: 10.1007/978-1-4613-0003-8.  Google Scholar

[15]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models,, J. Differential Equations, 195 (2003), 430.  doi: 10.1016/S0022-0396(03)00175-X.  Google Scholar

[16]

H. Wang, Spreading speeds and traveling waves for non-cooperative reaction-diffusion stsyems,, J. Nonlinear Sciences, 21 (2011), 747.  doi: 10.1007/s00332-011-9099-9.  Google Scholar

[17]

H. Wang and X.-S. Wang, Travelling waves phenomena in a Kermack-McKendrick SIR model,, J. Dyn. Diff. Equat., 28 (2016), 143.  doi: 10.1007/s10884-015-9506-2.  Google Scholar

[18]

W. Wang and X.-Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission,, SIAM J. Appl. Math., 71 (2011), 147.  doi: 10.1137/090775890.  Google Scholar

[19]

X.-S. Wang, H. Wang and J. Wu, Travelling waves of diffusive predator-prey systems: Disease outbreak propagation,, Discrete Contin. Dyn. Sys., 32 (2012), 3303.  doi: 10.3934/dcds.2012.32.3303.  Google Scholar

[20]

Z.-C. Wang and J. Wu, Travelling waves of a diffusive Kermack-McKendrick epidemic model with non-local delayed transmission,, Proc. R. Soc., 466 (2010), 237.  doi: 10.1098/rspa.2009.0377.  Google Scholar

[21]

P. Weng and X.-Q. Zhao, Spreading speed and traveling waves for a multi-type SIS epidemics model,, J. Differential Equations, 229 (2006), 270.  doi: 10.1016/j.jde.2006.01.020.  Google Scholar

[22]

S.-L. Wu and C.-H. Hsu, Existence of entire solutions for delayed monostable epidemic models,, Trans. Amer. Math. Soc., 368 (2016), 6033.  doi: 10.1090/tran/6526.  Google Scholar

[23]

S.-L. Wu, C.-H. Hsu and Y. Xiao, Global attractivity, spreading speeds and traveling wave of delayed nonlocal reaction-diffusion systems,, J. Differential Equations, 258 (2015), 1058.  doi: 10.1016/j.jde.2014.10.009.  Google Scholar

[24]

Z. Xu, Traveling waves in a Kermack-Mckendrick epidemic model with diffusion and latent period,, Nonlinear Analysis, 111 (2014), 66.  doi: 10.1016/j.na.2014.08.012.  Google Scholar

[25]

Z. Xu, Traveling waves for a diffusive SEIR epidemic model,, Commun. Pure Appl. Anal. 15 (2016), 15 (2016), 871.  doi: 10.3934/cpaa.2016.15.871.  Google Scholar

[26]

Z. Xu, C. Ai, Traveling waves in a diffusive influenza epidemic model with vaccination,, Appl. Math. Modelling. 40 (2016), 40 (2016), 7265.  doi: 10.1016/j.apm.2016.03.021.  Google Scholar

[27]

F.-Y. Yang, Y. Li, W.-T. Li and Z.-C. Wang, Traveling waves in a nonlocal dispersal Kermack-Mckendrick epidmic model,, Discrete Contin. Dyn. Sys., 18 (2013), 1969.  doi: 10.3934/dcdsb.2013.18.1969.  Google Scholar

[28]

F.-Y. Yang, Y. Li, W.-T. Li and Z.-C. Wang, Traveling waves in a nonlocal dispersal SIR epidmic model,, Nonlinear Analysis: Real World Applications, 23 (2015), 129.  doi: 10.1016/j.nonrwa.2014.12.001.  Google Scholar

[29]

T. Zhang and W. Wang, Existence of thaveling wave solutions for influenza model with treatment,, J. Math. Anal. Appl., 419 (2014), 469.  doi: 10.1016/j.jmaa.2014.04.068.  Google Scholar

[1]

Zhiting Xu. Traveling waves for a diffusive SEIR epidemic model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 871-892. doi: 10.3934/cpaa.2016.15.871

[2]

Wei Ding, Wenzhang Huang, Siroj Kansakar. Traveling wave solutions for a diffusive sis epidemic model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1291-1304. doi: 10.3934/dcdsb.2013.18.1291

[3]

Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37

[4]

Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595

[5]

Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692

[6]

Zhisheng Shuai, P. van den Driessche. Impact of heterogeneity on the dynamics of an SEIR epidemic model. Mathematical Biosciences & Engineering, 2012, 9 (2) : 393-411. doi: 10.3934/mbe.2012.9.393

[7]

Zhigui Lin, Yinan Zhao, Peng Zhou. The infected frontier in an SEIR epidemic model with infinite delay. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2355-2376. doi: 10.3934/dcdsb.2013.18.2355

[8]

Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455

[9]

Wan-Tong Li, Wen-Bing Xu, Li Zhang. Traveling waves and entire solutions for an epidemic model with asymmetric dispersal. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2483-2512. doi: 10.3934/dcds.2017107

[10]

Edoardo Beretta, Dimitri Breda. An SEIR epidemic model with constant latency time and infectious period. Mathematical Biosciences & Engineering, 2011, 8 (4) : 931-952. doi: 10.3934/mbe.2011.8.931

[11]

Julia Amador, Mariajesus Lopez-Herrero. Cumulative and maximum epidemic sizes for a nonlinear SEIR stochastic model with limited resources. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3137-3151. doi: 10.3934/dcdsb.2017211

[12]

Qun Liu, Daqing Jiang, Ningzhong Shi, Tasawar Hayat, Ahmed Alsaedi. Stationarity and periodicity of positive solutions to stochastic SEIR epidemic models with distributed delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2479-2500. doi: 10.3934/dcdsb.2017127

[13]

Zhaosheng Feng, Goong Chen. Traveling wave solutions in parametric forms for a diffusion model with a nonlinear rate of growth. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 763-780. doi: 10.3934/dcds.2009.24.763

[14]

Junhao Wen, Peixuan Weng. Traveling wave solutions in a diffusive producer-scrounger model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 627-645. doi: 10.3934/dcdsb.2017030

[15]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[16]

Liang Zhang, Bingtuan Li. Traveling wave solutions in an integro-differential competition model. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 417-428. doi: 10.3934/dcdsb.2012.17.417

[17]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[18]

Wan-Tong Li, Guo Lin, Cong Ma, Fei-Ying Yang. Traveling wave solutions of a nonlocal delayed SIR model without outbreak threshold. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 467-484. doi: 10.3934/dcdsb.2014.19.467

[19]

F. Berezovskaya, Erika Camacho, Stephen Wirkus, Georgy Karev. "Traveling wave'' solutions of Fitzhugh model with cross-diffusion. Mathematical Biosciences & Engineering, 2008, 5 (2) : 239-260. doi: 10.3934/mbe.2008.5.239

[20]

Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 709-722. doi: 10.3934/dcdss.2020039

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (19)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]