-
Previous Article
Permanence and ergodicity of stochastic Gilpin-Ayala population model with regime switching
- DCDS-B Home
- This Issue
-
Next Article
The steady state solutions to thermohaline circulation equations
Traveling waves in an SEIR epidemic model with the variable total population
1. | School of Mathematical Sciences, South China Normal University, Guangzhou, Guangdong 510631 |
References:
[1] |
Appl. Math. Comput., 263 (2015), 221-232.
doi: 10.1016/j.amc.2015.04.048. |
[2] |
Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 1370-1381.
doi: 10.1016/j.cnsns.2014.07.005. |
[3] |
Arch. Ration. Mech. Anal., 178 (2005), 57-80.
doi: 10.1007/s00205-005-0367-4. |
[4] |
Springer, New York, 2001.
doi: 10.1007/978-1-4757-3516-1. |
[5] |
Proc. Amer. Math. Soc., 132 (2004), 2433-2439.
doi: 10.1090/S0002-9939-04-07432-5. |
[6] |
J. Dyn. Diff. Equat., 21 (2009), 663-680.
doi: 10.1007/s10884-009-9152-7. |
[7] |
J. Math. Anal. Appl., 435 (2016), 20-37.
doi: 10.1016/j.jmaa.2015.09.069. |
[8] |
SIAM Review, 42 (2000), 599-653.
doi: 10.1137/S0036144500371907. |
[9] |
Math. Models. Methods Appl. Sci., 5 (1995), 935-966.
doi: 10.1142/S0218202595000504. |
[10] |
Nonlinearity, 26 (2013), 121-139.
doi: 10.1088/0951-7715/26/1/121. |
[11] |
Proc. R. Soc. Lond., B. 115 (1927), 700-721. Google Scholar |
[12] |
Discrete Contin. Dyn. Sys., Ser.B. 19 (2014), 467-484.
doi: 10.3934/dcdsb.2014.19.467. |
[13] |
Springer, New York, 2002. |
[14] |
third edition, Springer, New York, 2001.
doi: 10.1007/978-1-4613-0003-8. |
[15] |
J. Differential Equations, 195 (2003), 430-470.
doi: 10.1016/S0022-0396(03)00175-X. |
[16] |
J. Nonlinear Sciences, 21 (2011), 747-783.
doi: 10.1007/s00332-011-9099-9. |
[17] |
J. Dyn. Diff. Equat., 28 (2016), 143-166.
doi: 10.1007/s10884-015-9506-2. |
[18] |
SIAM J. Appl. Math., 71 (2011), 147-168.
doi: 10.1137/090775890. |
[19] |
Discrete Contin. Dyn. Sys., 32 (2012), 3303-3324.
doi: 10.3934/dcds.2012.32.3303. |
[20] |
Proc. R. Soc., A, 466 (2010), 237-261.
doi: 10.1098/rspa.2009.0377. |
[21] |
J. Differential Equations, 229 (2006), 270-296.
doi: 10.1016/j.jde.2006.01.020. |
[22] |
Trans. Amer. Math. Soc., 368 (2016), 6033-6062.
doi: 10.1090/tran/6526. |
[23] |
J. Differential Equations, 258 (2015), 1058-1105.
doi: 10.1016/j.jde.2014.10.009. |
[24] |
Nonlinear Analysis, 111 (2014), 66-81.
doi: 10.1016/j.na.2014.08.012. |
[25] |
Commun. Pure Appl. Anal. 15 (2016), 871-892.
doi: 10.3934/cpaa.2016.15.871. |
[26] |
Appl. Math. Modelling. 40 (2016), 7265-7280.
doi: 10.1016/j.apm.2016.03.021. |
[27] |
Discrete Contin. Dyn. Sys., Ser.B. 18 (2013), 1969-1993.
doi: 10.3934/dcdsb.2013.18.1969. |
[28] |
Nonlinear Analysis: Real World Applications, 23 (2015), 129-147.
doi: 10.1016/j.nonrwa.2014.12.001. |
[29] |
J. Math. Anal. Appl., 419 (2014), 469-495.
doi: 10.1016/j.jmaa.2014.04.068. |
show all references
References:
[1] |
Appl. Math. Comput., 263 (2015), 221-232.
doi: 10.1016/j.amc.2015.04.048. |
[2] |
Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 1370-1381.
doi: 10.1016/j.cnsns.2014.07.005. |
[3] |
Arch. Ration. Mech. Anal., 178 (2005), 57-80.
doi: 10.1007/s00205-005-0367-4. |
[4] |
Springer, New York, 2001.
doi: 10.1007/978-1-4757-3516-1. |
[5] |
Proc. Amer. Math. Soc., 132 (2004), 2433-2439.
doi: 10.1090/S0002-9939-04-07432-5. |
[6] |
J. Dyn. Diff. Equat., 21 (2009), 663-680.
doi: 10.1007/s10884-009-9152-7. |
[7] |
J. Math. Anal. Appl., 435 (2016), 20-37.
doi: 10.1016/j.jmaa.2015.09.069. |
[8] |
SIAM Review, 42 (2000), 599-653.
doi: 10.1137/S0036144500371907. |
[9] |
Math. Models. Methods Appl. Sci., 5 (1995), 935-966.
doi: 10.1142/S0218202595000504. |
[10] |
Nonlinearity, 26 (2013), 121-139.
doi: 10.1088/0951-7715/26/1/121. |
[11] |
Proc. R. Soc. Lond., B. 115 (1927), 700-721. Google Scholar |
[12] |
Discrete Contin. Dyn. Sys., Ser.B. 19 (2014), 467-484.
doi: 10.3934/dcdsb.2014.19.467. |
[13] |
Springer, New York, 2002. |
[14] |
third edition, Springer, New York, 2001.
doi: 10.1007/978-1-4613-0003-8. |
[15] |
J. Differential Equations, 195 (2003), 430-470.
doi: 10.1016/S0022-0396(03)00175-X. |
[16] |
J. Nonlinear Sciences, 21 (2011), 747-783.
doi: 10.1007/s00332-011-9099-9. |
[17] |
J. Dyn. Diff. Equat., 28 (2016), 143-166.
doi: 10.1007/s10884-015-9506-2. |
[18] |
SIAM J. Appl. Math., 71 (2011), 147-168.
doi: 10.1137/090775890. |
[19] |
Discrete Contin. Dyn. Sys., 32 (2012), 3303-3324.
doi: 10.3934/dcds.2012.32.3303. |
[20] |
Proc. R. Soc., A, 466 (2010), 237-261.
doi: 10.1098/rspa.2009.0377. |
[21] |
J. Differential Equations, 229 (2006), 270-296.
doi: 10.1016/j.jde.2006.01.020. |
[22] |
Trans. Amer. Math. Soc., 368 (2016), 6033-6062.
doi: 10.1090/tran/6526. |
[23] |
J. Differential Equations, 258 (2015), 1058-1105.
doi: 10.1016/j.jde.2014.10.009. |
[24] |
Nonlinear Analysis, 111 (2014), 66-81.
doi: 10.1016/j.na.2014.08.012. |
[25] |
Commun. Pure Appl. Anal. 15 (2016), 871-892.
doi: 10.3934/cpaa.2016.15.871. |
[26] |
Appl. Math. Modelling. 40 (2016), 7265-7280.
doi: 10.1016/j.apm.2016.03.021. |
[27] |
Discrete Contin. Dyn. Sys., Ser.B. 18 (2013), 1969-1993.
doi: 10.3934/dcdsb.2013.18.1969. |
[28] |
Nonlinear Analysis: Real World Applications, 23 (2015), 129-147.
doi: 10.1016/j.nonrwa.2014.12.001. |
[29] |
J. Math. Anal. Appl., 419 (2014), 469-495.
doi: 10.1016/j.jmaa.2014.04.068. |
[1] |
Yu Yang, Jinling Zhou, Cheng-Hsiung Hsu. Critical traveling wave solutions for a vaccination model with general incidence. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021087 |
[2] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
[3] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[4] |
Kazeem Olalekan Aremu, Chinedu Izuchukwu, Grace Nnenanya Ogwo, Oluwatosin Temitope Mewomo. Multi-step iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2161-2180. doi: 10.3934/jimo.2020063 |
[5] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[6] |
Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201 |
[7] |
Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016 |
[8] |
Yan Zhang, Peibiao Zhao, Xinghu Teng, Lei Mao. Optimal reinsurance and investment strategies for an insurer and a reinsurer under Hestons SV model: HARA utility and Legendre transform. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2139-2159. doi: 10.3934/jimo.2020062 |
[9] |
Renhao Cui. Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2997-3022. doi: 10.3934/dcdsb.2020217 |
[10] |
Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3651-3682. doi: 10.3934/dcds.2021011 |
[11] |
Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021021 |
[12] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2543-2557. doi: 10.3934/dcds.2020374 |
[13] |
Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365 |
[14] |
José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030 |
[15] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[16] |
Yuta Ishii, Kazuhiro Kurata. Existence of multi-peak solutions to the Schnakenberg model with heterogeneity on metric graphs. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021035 |
[17] |
Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2899-2920. doi: 10.3934/dcdsb.2020210 |
[18] |
Lara Abi Rizk, Jean-Baptiste Burie, Arnaud Ducrot. Asymptotic speed of spread for a nonlocal evolutionary-epidemic system. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021064 |
[19] |
Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3241-3271. doi: 10.3934/dcds.2020404 |
[20] |
Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021014 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]