Citation: |
[1] |
F. Battelli and M. Feckan, Subharmonic solutions in singular systems, J. Diff. Eqns., 132 (1996), 21-45.doi: 10.1006/jdeq.1996.0169. |
[2] |
C. M. Blazquez, Bifurcations from a homoclinic orbit in parabolic differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 103 (1986), 265-274.doi: 10.1017/S0308210500018916. |
[3] |
C. M. Blazquez, Transverse homoclinic orbits in periodically perturbed parabolic equations, Nonlinear Anal., 10 (1986), 1277-1291.doi: 10.1016/0362-546X(86)90066-0. |
[4] |
S.-N. Chow and B. Deng, Bifurcation of a unique stable periodic orbit from a homoclinic orbit in infinite-dimensional systems, Trans. Amer. Math. Soc., 312 (1989), 539-587.doi: 10.1090/S0002-9947-1989-0988882-6. |
[5] |
S.-N. Chow, J. K. Hale and J. Mallet-Paret, An example of bifurcation to homoclinic orbits, J. Diff. Eqns., 37 (1980), 351-373.doi: 10.1016/0022-0396(80)90104-7. |
[6] |
M. Feckan and J. Gruendler, Bifurcation from homoclinic to periodic solutions in singular ordinary differential equations, J. Math. Anal. Appl., 246 (2000), 245-264.doi: 10.1006/jmaa.2000.6791. |
[7] |
J. Gruendler, Homoclinic solutions for autonomous ordinary differential equations with nonautonomous perturbations, J. Diff. Eqns., 122 (1995), 1-26.doi: 10.1006/jdeq.1995.1136. |
[8] |
J. Gruendler, Homoclinic solutions and chaos in ordinarry differential equations with singular perturbations, Trans. Amer. Math. Soc., 350 (1998), 3797-3814.doi: 10.1090/S0002-9947-98-02211-9. |
[9] |
J. K. Hale and X. B. Lin, Heteroclinic orbits for retarded functional differential equations, J. Diff. Eqns., 65 (1986), 175-202.doi: 10.1016/0022-0396(86)90032-X. |
[10] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Berlin, Springer, 1981. |
[11] |
M. Kamenskii, B. Mikhaylenko and P. Nistri, A bifurcation problem for a class of periodically perturbed autonomous parabolic equations, Boundary Value Problems, 2013 (2013), 1-18.doi: 10.1186/1687-2770-2013-101. |
[12] |
J. Knobloch and T. Rieß, Lin's method for heteroclinic chains involving periodic orbits, Nonlinearity, 23 (2010), 23-54.doi: 10.1088/0951-7715/23/1/002. |
[13] |
X. B. Lin, Exponential dichotomies and homoclinic orbits in functional defferential equations, J. Diff. Eqns., 63 (1986), 227-254.doi: 10.1016/0022-0396(86)90048-3. |
[14] |
X. B. Lin, Using Melnikov's method to solve Silnikov's problem, Proc. Roy. Soc. Edinburgh Sect. A, 116 (1990), 295-325.doi: 10.1017/S0308210500031528. |
[15] |
X. B. Lin, Lin's method Scholarpedia, 3 (2008), 6972, http://www.scholarpedia.org/article/Lin |
[16] |
K. Matthies, Exponentially small splitting of homoclinic orbits of parabolic differential equations under periodic forcing, Disc. Cont. Dyn. Sys., 9 (2003), 585-602.doi: 10.3934/dcds.2003.9.585. |
[17] |
K. Palmer, Exponential dichotomies and transversal homoclinic points, J. Diff. Eqns., 55 (1984), 225-256.doi: 10.1016/0022-0396(84)90082-2. |
[18] |
J. D. M. Rademacher, Lyapunov-Schmidt reduction for unfolding heteroclinic networks of equilibria and periodic orbits with tangencies, J. Diff. Eqns., 249 (2010), 305-348.doi: 10.1016/j.jde.2010.04.007. |
[19] |
S. Ruan, J. Wei and J. Wu, Bifurcation from a homoclinic orbit in partial functional differential equations, Disc. Cont. Dyn. Sys., 9 (2003), 1293-1322.doi: 10.3934/dcds.2003.9.1293. |
[20] |
L. P. Silnikov, A case of the existence of a countable number of periodic motions, (Russian) Dokl. Akad. Nauk SSSR , 160 (1965), 558-561. |
[21] |
L. P. Silnikov, The existence of a denumerable set of periodic motions in four-dimensional space in an extended neighborhood of a saddle-focus, Soviet Math. Dokl., 172 (1967), 54-57. |
[22] |
L. P. Silnikov, On the generalization of a periodic motion from trajectories doubly asymptotic to an equilibrium state of saddle, Math. USSR Sb., 77 (1968), 461-472. |
[23] |
L. P. Silnikov, A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focue type, Math. USSR Sb., 81 (1970), 92-103. |
[24] |
H. O. Walther, Bifurcation from saddle connection in functional differential equations: An approach with inclination lemmas, Dissertationes Math. (Rozprawy Mat.), 291 (1990), 74 pp, http://eudml.org/doc/268509 |
[25] |
C. Zhu, The coexistence of subharmonics bifurcated from homoclinic orbits in singular systems, Nonlinearity, 21 (2008), 285-303.doi: 10.1088/0951-7715/21/2/005. |