\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The periodic solutions bifurcated from a homoclinic solution for parabolic differential equations

Abstract Related Papers Cited by
  • Assume that the unperturbed parabolic equation has a degenerate homoclinic orbit. Under $T$-periodic perturbations, the periodic solutions bifurcated from the homoclinic solution are studied. By Fredholm alternative and Lyapunov-Schmidt reduction, the bifurcation functions defined between two finite-dimensional spaces are obtained. Some solvable conditions for the bifurcation functions are given. It is shown that, for any large $n>0$, the perturbed parabolic differential equation has a periodic solution with period $nT$.
    Mathematics Subject Classification: Primary: 34C23, 34C25; Secondary: 34C45, 34C40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Battelli and M. Feckan, Subharmonic solutions in singular systems, J. Diff. Eqns., 132 (1996), 21-45.doi: 10.1006/jdeq.1996.0169.

    [2]

    C. M. Blazquez, Bifurcations from a homoclinic orbit in parabolic differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 103 (1986), 265-274.doi: 10.1017/S0308210500018916.

    [3]

    C. M. Blazquez, Transverse homoclinic orbits in periodically perturbed parabolic equations, Nonlinear Anal., 10 (1986), 1277-1291.doi: 10.1016/0362-546X(86)90066-0.

    [4]

    S.-N. Chow and B. Deng, Bifurcation of a unique stable periodic orbit from a homoclinic orbit in infinite-dimensional systems, Trans. Amer. Math. Soc., 312 (1989), 539-587.doi: 10.1090/S0002-9947-1989-0988882-6.

    [5]

    S.-N. Chow, J. K. Hale and J. Mallet-Paret, An example of bifurcation to homoclinic orbits, J. Diff. Eqns., 37 (1980), 351-373.doi: 10.1016/0022-0396(80)90104-7.

    [6]

    M. Feckan and J. Gruendler, Bifurcation from homoclinic to periodic solutions in singular ordinary differential equations, J. Math. Anal. Appl., 246 (2000), 245-264.doi: 10.1006/jmaa.2000.6791.

    [7]

    J. Gruendler, Homoclinic solutions for autonomous ordinary differential equations with nonautonomous perturbations, J. Diff. Eqns., 122 (1995), 1-26.doi: 10.1006/jdeq.1995.1136.

    [8]

    J. Gruendler, Homoclinic solutions and chaos in ordinarry differential equations with singular perturbations, Trans. Amer. Math. Soc., 350 (1998), 3797-3814.doi: 10.1090/S0002-9947-98-02211-9.

    [9]

    J. K. Hale and X. B. Lin, Heteroclinic orbits for retarded functional differential equations, J. Diff. Eqns., 65 (1986), 175-202.doi: 10.1016/0022-0396(86)90032-X.

    [10]

    D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Berlin, Springer, 1981.

    [11]

    M. Kamenskii, B. Mikhaylenko and P. Nistri, A bifurcation problem for a class of periodically perturbed autonomous parabolic equations, Boundary Value Problems, 2013 (2013), 1-18.doi: 10.1186/1687-2770-2013-101.

    [12]

    J. Knobloch and T. Rieß, Lin's method for heteroclinic chains involving periodic orbits, Nonlinearity, 23 (2010), 23-54.doi: 10.1088/0951-7715/23/1/002.

    [13]

    X. B. Lin, Exponential dichotomies and homoclinic orbits in functional defferential equations, J. Diff. Eqns., 63 (1986), 227-254.doi: 10.1016/0022-0396(86)90048-3.

    [14]

    X. B. Lin, Using Melnikov's method to solve Silnikov's problem, Proc. Roy. Soc. Edinburgh Sect. A, 116 (1990), 295-325.doi: 10.1017/S0308210500031528.

    [15]

    X. B. Lin, Lin's method Scholarpedia, 3 (2008), 6972, http://www.scholarpedia.org/article/Lin

    [16]

    K. Matthies, Exponentially small splitting of homoclinic orbits of parabolic differential equations under periodic forcing, Disc. Cont. Dyn. Sys., 9 (2003), 585-602.doi: 10.3934/dcds.2003.9.585.

    [17]

    K. Palmer, Exponential dichotomies and transversal homoclinic points, J. Diff. Eqns., 55 (1984), 225-256.doi: 10.1016/0022-0396(84)90082-2.

    [18]

    J. D. M. Rademacher, Lyapunov-Schmidt reduction for unfolding heteroclinic networks of equilibria and periodic orbits with tangencies, J. Diff. Eqns., 249 (2010), 305-348.doi: 10.1016/j.jde.2010.04.007.

    [19]

    S. Ruan, J. Wei and J. Wu, Bifurcation from a homoclinic orbit in partial functional differential equations, Disc. Cont. Dyn. Sys., 9 (2003), 1293-1322.doi: 10.3934/dcds.2003.9.1293.

    [20]

    L. P. Silnikov, A case of the existence of a countable number of periodic motions, (Russian) Dokl. Akad. Nauk SSSR , 160 (1965), 558-561.

    [21]

    L. P. Silnikov, The existence of a denumerable set of periodic motions in four-dimensional space in an extended neighborhood of a saddle-focus, Soviet Math. Dokl., 172 (1967), 54-57.

    [22]

    L. P. Silnikov, On the generalization of a periodic motion from trajectories doubly asymptotic to an equilibrium state of saddle, Math. USSR Sb., 77 (1968), 461-472.

    [23]

    L. P. Silnikov, A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focue type, Math. USSR Sb., 81 (1970), 92-103.

    [24]

    H. O. Walther, Bifurcation from saddle connection in functional differential equations: An approach with inclination lemmas, Dissertationes Math. (Rozprawy Mat.), 291 (1990), 74 pp, http://eudml.org/doc/268509

    [25]

    C. Zhu, The coexistence of subharmonics bifurcated from homoclinic orbits in singular systems, Nonlinearity, 21 (2008), 285-303.doi: 10.1088/0951-7715/21/2/005.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(115) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return