We study the problem of inventory control, with simultaneous pricing optimization in continuous time. For the classical inventory control problem in continuous time, see [
Citation: |
G. Allon and A. Zeevi , A Note on the Relationship Among Capacity, Pricing and Inventory in a Make-to-Stock System, Production and Operations Management, 20 (2011) , 143-151. doi: 10.1111/j.1937-5956.2010.01193.x. | |
K. J. Arrow , T. Harris and J. Marshak , Optimal inventory policy, Econometrica, 19 (1951) , 250-272. doi: 10.2307/1906813. | |
J. A. Bather , A continuous time inventory model, Journal of Applied Probability, 3 (1966) , 538-549. doi: 10.1017/S0021900200114317. | |
R. Bellman, Dynamic Programming, Dover Books on Computer Science, 2003. | |
A. Bensoussan, Dynamic Programming and Inventory Control, IOS Press, Studies in Probability, Optimization and Statistics, 2011. | |
C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers Ⅰ, Springer Science & Business Media, 1999. doi: 10.1007/978-1-4757-3069-2. | |
A. Bensoussan and J. L. Lions, Impulse Control and Quasi-Variational Inequalities, Dunod, 1982. | |
A. Bensoussan , R. H. Liu and S. Sethi , Optimality of and $(s,S)$ policy with compound poisson and diffusion demands: A QVI approach, SIAM J. Control Optim., 44 (2005) , 1650-1676. doi: 10.1137/S0363012904443737. | |
A. Bensoussan and Y. Houmin, Inventory Control with Pricing Optimization, 2013. | |
S. Browne and P. Zipkin , Inventory models with continuous, stochastic demands, The Annals of Applied Probability, 1 (1991) , 419-435. doi: 10.1214/aoap/1177005875. | |
X. Chen and D. Simchi-Levi , Pricing and inventory management, The Oxford Handbook of Pricing Management eds. R. Phillips and O. Ozalp, Oxford University Press, (2012) , 784-822. doi: 10.1093/oxfordhb/9780199543175.013.0030. | |
X. Chen and J. Zhang , Production control and supplier selection under demand, Journal of Industrial Engineering and Management, 3 (2010) , 421-446. doi: 10.3926/jiem.2010.v3n3.p421-446. | |
T. Dohi , N. Kaio and S. Osaki , A continuous time inventory control for wiener process demand, Computers Math. Applic., 26 (1993) , 11-22. doi: 10.1016/0898-1221(93)90002-D. | |
A. Federgruen and A. Heching , Combined pricing and inventory control under uncertainty, Operations Research, 47 (1999) , 454-475. doi: 10.1287/opre.47.3.454. | |
Q. Feng , G. Gallego , S. Sethi , H. Yan and H. Zhang , Are base-stock policies optimal in inventory problems with multiple delivery modes?, Operations Research, 54 (2006) , 801-807. doi: 10.1287/opre.1050.0271. | |
Q. Feng , S. Luo and D. Zhang , Dynamic inventory-pricing control under backorder: Demand estimation and policy optimization, Manufactoring and Service Operations Management, 16 (2013) , 149-160. doi: 10.1287/msom.2013.0459. | |
F. S. Gökhan, Effect of the Guess Function & Continuation Method on the Run Time of MATLAB BVP Solvers, 2011. | |
F. W. Harris , How many parts to make of one, Factory, The Magazine of Management, 10 (1913) , 135-136. | |
J. Harrison and A. Taylor , Optimal control of a brownian storage system, Stochastic Process and Their Applications, 6 (1978) , 179-194. | |
L. Gimpl-Heersink , C. Rudloff , M. Fleischmann and A. Taudes , Integrating pricing and inventory control: Is it worth the efffort?, Business Reasearch Official Open Access Journal of VHB, 1 (2008) , 106-123. doi: 10.1007/BF03342705. | |
S. C. Graves, A Base Stock Inventory Model for Remanufacturable Product, MIT, http://hdl.handle.net/1721.1/3735. | |
R. Güllü , Base Stock policies for production/invenotry problems with uncertain capacity levels, European Journal of Operational Research, 105 (1998) , 43-51. | |
http://se.mathworks.com/help/matlab/ref/bvp5c.html?requestedDomain=www.mathworks.com# | |
G. van Ryzin and G. Vulcano , Optimal auctioning and ordering in an infinite horizon inventory-pricing system, Operations Research, 52 (2004) , 346-367. doi: 10.1287/opre.1040.0105. | |
Y. Lu , Y. Chen , M. Song and X. Yan , Optimal pricing and inventory control policy with quantity-based price differentiation, Operations Research, 62 (2014) , 512-523. doi: 10.1287/opre.2013.1240. | |
E. L. Porteus, Stochastic Inventory Theory, in Handbooks in O. R. and M. S. , (eds. D. Heyman, M. J. Sobel), Elsevier, 2 (1990), 605-652. doi: 10.1016/S0927-0507(05)80176-8. | |
M. L. Puterman , A diffusion process model for a storage system, TIMS Studies in Management Sciences, 1 (1975) , 143-159. | |
Y. Qin , R. Wang , J. V. Asoo , Y. Chen and M. M. H. Seref , The newsvendor problem: Review and directions for future research, European Journal of Operational Research, 213 (2011) , 361-374. doi: 10.1016/j.ejor.2010.11.024. | |
K. Sato and K. Sawaki , A continuous-time inventory model with procurement from spot market, Journal of the Operations Research Society of Japan, 53 (2010) , 136-148. | |
L. F. Shampine, I. Gladwell and S. Thompson, Solving ODEs with MATLAB, Cambridge University Press, 2013. doi: 10.1017/CBO9780511615542. | |
T. M. Whitin , Inventory control and price theory, Management Science, 2 (1955) , 61-68. doi: 10.1287/mnsc.2.1.61. | |
R. Zhang, An Introduction to Joint Pricing and Inventory Management under Stochastic Demand, 2013. |
Finding the value of
Price depending on Inventory Level