
-
Previous Article
Stochastic volatility with regime switching and uncertain noise: Filtering with sub-linear expectations
- DCDS-B Home
- This Issue
-
Next Article
Base stock list price policy in continuous time
Morphogenesis modelization of a fractone-based model
Department of Mathematics, University of Hawaii at Manoa, 2565 McCarthy Mall, Honolulu, HI, 96822, USA |
It has been hypothesized that the generation of new neural cells (neurogenesis) in the developing and adult brain is guided by the extracellular matrix. The extracellular matrix of the neurogenic niches features specialized structures termed fractones, which are scattered in between stem/progenitor cells and bind and activate growth factors at the surface of stem/progenitor cells to influence their proliferation. We present a mathematical control model that considers the role of fractones as captors and activators of growth factors, controlling the rate of proliferation and directing the location of the newly generated neuroepithelial cells in the forming brain. The model is a hybrid control system that incorporates both continuous and discrete dynamics. The continuous dynamics of the model features the diffusion of multiple growth factor concentrations through the mass of cells, with fractones acting as sinks that absorb and hold growth factor. When a sufficient amount has been captured, growth is assumed to occur instantaneously in the discrete dynamics of the model, causing an immediate rearrangement of cells, and potentially altering the dynamics of the diffusion. The fractones in the model are represented by controls that allow for their dynamic placement in and removal from the evolving cell mass.
References:
[1] |
R. Araujo and D. McElwain,
A history of the study of solid tumour growth: The contribution of mathematical modelling, Bull. Math. Biol., 66 (2004), 1039-1091.
doi: 10.1016/j.bulm.2003.11.002. |
[2] |
A. Auley, Z. Werb and P. Mirkes,
Characterization of the unusually rapid cell cycles during rat gastrulation, Development, 117 (1993), 873-883.
|
[3] |
A. Bafico and S. Aaronson, Holland-Frei Cancer Medicine, 6th edition, BC Decker, 2003. |
[4] |
S. Banerjee, R. Cohn and M. Bernfield,
Basal lamina of embryonic salivary epithelia. production by the epithelium and role in maintaining lobular morphology, The Journal of Cell Biology, 73 (1977), 445-463.
|
[5] |
E. Bianconi, A. Piovesan, F. Facchin, A. Beraudi, R. Casadei, F. Frabetti, L. Vitale, M. Pelleri, S. Tassani, F. Piva, S. Perez-Amodio, P. Strippoli and S. Canaider,
An estimation of the number of cells in the human body, Ann Hum Biol., 40 (2013), 463-471.
doi: 10.3109/03014460.2013.807878. |
[6] |
G. Brodland, X. Chen, P. Lee and M. Marsden,
From genes to neural tube defects (ntds): Insights from multiscale computational modeling, HFSP J, 4 (2010), 142-152.
|
[7] |
R. Chaturvedi, C. Huang, B. Kazmierczak, T. Schneider, J. Izaguirre, T. Glimm, H. Hentschel, J. Glazier, S. Newman and M. Alber,
On multiscale approaches to three-dimensional modelling of morphogenesis, J R Soc Interface, 2 (2005), 237-253.
doi: 10.1098/rsif.2005.0033. |
[8] |
H. Chen and G. Brodland,
Cell-level finite element studies of viscous cells in planar aggregates, J Biomech Eng, 122 (2000), 394-401.
doi: 10.1115/1.1286563. |
[9] |
M. Chyba, M. Kobayashi, F. Mercier, J. Rader, A. Tamura-Sato, G. Telleschi and Y. Kwon,
A new approach to modeling morphogenesis using control theory, Special volume of the São Paulo Journal of Mathematical Sciences in honor of Prof. Waldyr Oliva,, 5 (2011), 281-315.
doi: 10.11606/issn.2316-9028.v5i2p281-315. |
[10] |
P. Ciarletta, M. Ben Amar and M. Labouesse,
Continuum model of epithelial morphogenesis during caenorhabditis elegans embryonic elongation, Phil. Trans. R. Soc. A, 367 (2009), 3379-3400.
doi: 10.1098/rsta.2009.0088. |
[11] |
D. Clausi and G. Brodland,
Mechanical evaluation of theories of neurulation using computer simulations, Development, 118 (1993), 1013-1023.
|
[12] |
I. Decimo, G. Fumagalli, V. Berton, M. Krampera and F. Bifari,
Meninges: from protective membrane to stem cell niche, American Journal of Stem Cells, 1 (2012), 92-105.
|
[13] |
V. Douet, E. Arikawa-Hirasawa and F. Mercier,
Fractone-heparan sulfates mediate bmp-7 inhibition of cell proliferation in the adult subventricular zone, Neuroscience Letters, 528 (2012), 120-125.
doi: 10.1016/j.neulet.2012.08.077. |
[14] |
M. Fitch and J. Silver,
Glial cell extracellular matrix: Boundaries for axon growth in development and regeneration, Cell and Tissue Research, 290 (1997), 379-384.
|
[15] |
H. Frieboes, X. Zheng, C. Sun, B. Tromberg, R. Gatenby and V. Cristini,
An integrated computational/experimental model of tumor invasion, Cancer Res, 66 (2006), 1597-1604.
doi: 10.1158/0008-5472.CAN-05-3166. |
[16] |
F. Gage,
Neurogenesis in the adult brain, The Journal of Neuroscience, 22 (2002), 612-613.
|
[17] |
T. Henzinger,
The theory of hybrid automata, Logic in Computer Science. LICS '96. Proceedings. Eleventh Annual IEEE Symposium, (1996), 278-292.
doi: 10.1109/LICS.1996.561342. |
[18] |
D. Ingber, J. Madri and J. Jamieson,
Role of basal lamina in neoplastic disorganization of tissue architecture, Proc. Natl. Acad. Sci. USA, 78 (1981), 3901-3905.
doi: 10.1073/pnas.78.6.3901. |
[19] |
A. Jacobson, G. Oster, G. Odell and L. Cheng,
Neurulation and the cortical tractor model for epithelial folding, Journal of Embryology and Experimental Morphology, 96 (1986), 19-49.
|
[20] |
K. Johansson, M. Egerstedt, J. Lygeros and S. Sastry,
On the regularization of zeno hybrid automata, System & Control Letters, 38 (1999), 141-150.
doi: 10.1016/S0167-6911(99)00059-6. |
[21] |
K. Johansson, J. Lygeros, S. Sastry and M. Egerstedt,
Simulation of zeno hybrid automata, Decision and Control, 4 (1999), 3538-3543.
doi: 10.1109/CDC.1999.827900. |
[22] |
G. Kempermann, L. Wiskott and F. Gage,
Functional significance of adult neurogenesis, Current Opinion in Neurobiology, 14 (2004), 186-191.
doi: 10.1016/j.conb.2004.03.001. |
[23] |
A. Kerever, J. Schnack, D. Vellinga, N. Ichikawa, C. Moon, E. Arikawa-Hirasawa, J. Efird and F. Mercier,
Novel extracellular matrix structures in the neural stem cell niche capture the neurogenic factor fibroblast growth factor 2 from the extracellular milieu, Stem Cells, 25 (2007), 2146-2157.
doi: 10.1634/stemcells.2007-0082. |
[24] |
Y. Kim, M. Stolarska and H. Othmer,
A hybrid model for tumor spheroid growth in vitro i: Theoretical development and early results, Mathematical Models and Methods in Applied Sciences, 17 (2007), 1773-1798.
doi: 10.1142/S0218202507002479. |
[25] |
L. Li, W. Dong, Y. Ji, Z. Zhang and L. Tong,
Minimal-energy driving strategy for high-speed electric train with hybrid system model, IEEE Transactions on Intelligent Transportation Systems, 14 (2013), 1642-1653.
|
[26] |
H. Lin and P. Antsaklis,
Hybrid dynamical systems: An introduction to control and verification, Foundations and Trends in Systems and Control, 1 (2014), 1-172.
|
[27] |
J. Lygeros, K. Johansson, S. Sastry and M. Egerstedt,
On the existence of executions of hybrid automata, Decision and Control, 3 (1999), 2249-2254.
doi: 10.1109/CDC.1999.831255. |
[28] |
J. Lygeros, K. Johansson, S. Simic, J. Zhang and S. Sastry,
Continuity and invariance in hybrid automata, Decision and Control, 1 (2001), 340-345.
doi: 10.1109/CDC.2001.980123. |
[29] |
J. Lygeros, K. Johansson, S. Simic, J. Zhang and S. Sastry,
Dynamical properties of hybrid automata, Automatic Control, IEEE Transactions, 48 (2003), 2-17.
doi: 10.1109/TAC.2002.806650. |
[30] |
J. Lygeros, S. Sastry and C. Tomlin, Hybrid Systems: Foundations, Advanced Topics, and Applications, Springer Verlag, 2012.
![]() |
[31] |
J. Meitzen, K. Pflepsen, C. Stern, R. Meisel and P. Mermelstein,
Measurements of neuron soma size and density in rat dorsal striatum, nucleus accumbens core and nucleus accumbens shell: Differences between striatal region and brain hemisphere, but not sex, Neuroscience Letters, 487 (2011), 177-181.
doi: 10.1016/j.neulet.2010.10.017. |
[32] |
F. Mercier and E. Arikawa-Hirakawa,
Heparan sulfate niche for cell proliferation in the adult brain, Neuroscience Letters, 510 (2012), 67-72.
doi: 10.1016/j.neulet.2011.12.046. |
[33] |
F. Mercier, J. Kitasako and G. Hatton,
Anatomy of the brain neurogenic zones revisited: Fractones and the fibroblast/macrophage network, J Comp Neurol, 451 (2002), 170-188.
doi: 10.1002/cne.10342. |
[34] |
F. Mercier, J. Kitasako and G. Hatton,
Fractones and other basal laminae in the hypothalamus, J Comp Neurol, 455 (2003), 324-340.
doi: 10.1002/cne.10496. |
[35] |
H. Minkowski, Space and time, in The Principle of Relativity, Calcutta University Press, 1920, 70-88, Trans. M Saha. |
[36] |
G. Oster,
On the crawling of cells, Journal of Embryology and Experimental Morphology, 83 (1984), 329-364.
|
[37] |
E. Palsson, Single-Cell-Based Models in Biology and Medicine, Mathematics and Biosciences in Interaction, 2007.
doi: 10.1007/978-3-7643-8123-3. |
[38] |
J. Piovesan, C. Abdallah and H. Tanner,
Preliminary results on interconnected hybrid systems, Control and Automation, (2008), 101-106.
doi: 10.1109/MED.2008.4602157. |
[39] |
J. Piovesan, C. Abdallah and H. Tanner,
Modeling multi-agent systems with hybrid interacting dynamics, American Control Conference, (2009), 3644-3649.
doi: 10.1109/ACC.2009.5160419. |
[40] |
J. Piovesan, H. Tanner and C. Abdallah,
Discrete asymptotic abstractions of hybrid systems, Decision and Control, (2006), 917-922.
doi: 10.1109/CDC.2006.377733. |
[41] |
N. Poplawski, M. Swat, J. Gens and J. Glazier,
Adhesion between cells, diffusion of growth factors, and elasticity of the aer produce the paddle shape of the chick limb, Physica A, 373 (2007), 521-532.
doi: 10.1016/j.physa.2006.05.028. |
[42] |
J. Rader, Dynamic Modelling Of Neural Morphogenesis Using Mathematical Control Theory, Master's thesis, University of Hawai'i, 2011. |
[43] |
K. Rejniak and A. Anderson,
Hybrid models of tumor growth, Wiley Interdiscip Rev Syst Biol Med, 3 (2011), 115-125.
doi: 10.1002/wsbm.102. |
[44] |
C. Ronse and M. Tajine,
Discretization in hausdorff space, Journal of Mathematical Imaging and Vision, 12 (2000), 219-242.
doi: 10.1023/A:1008366032284. |
[45] |
J. Sanes,
Extracellular matrix molecules that influence neural development, Ann. Rev. Neurosci, 12 (1989), 491-516.
doi: 10.1146/annurev.ne.12.030189.002423. |
[46] |
M. Stolarska, Y. Kim and H. Othmer,
Multi-scale models of cell and tissue dynamics, Phil. Trans. R. Soc. A, 367 (2009), 3525-3553.
doi: 10.1098/rsta.2009.0095. |
[47] |
A. Teel, A. Subbaraman and A. Sferlazza,
Stability analysis for stochastic hybrid systems: A survey, Automatica, 50 (2014), 2435-2456.
doi: 10.1016/j.automatica.2014.08.006. |
[48] |
S. Tripakis and T. Dang, Modeling, verification and testing using timed and hybrid automata, in Model-Based Design of Embedded Systems (ed. M. P. Nicolescu G), CRC Press, 2009,383-436.
doi: 10.1201/9781420067859-c13. |
[49] |
A. Voss-Bohme,
Multi-scale modeling in morphogenesis: A critical analysis of the cellular potts model, PLoS ONE, 7 (2012), e42852.
doi: 10.1371/journal.pone.0042852. |
[50] |
R. Vracko,
Basal lamina scaffold-anatomy and significance for maintenance of orderly tissue structure, Am J Pathol, 77 (1974), 313-346.
|
[51] |
D. Walker, S. Wood, J. Southgate, M. Holcombe and R. Smallwood,
An integrated agent-mathematical model of the effect of intercellular signalling via the epidermal growth factor receptor on cell proliferation, J Theor Biol, 242 (2006), 774-789.
doi: 10.1016/j.jtbi.2006.04.020. |
[52] |
J. Ward and J. King,
Mathematical modelling of avascular-tumour growth, IMA J Math Appl Med Biol, 14 (1997), 39-69.
doi: 10.1093/imammb/14.1.39. |
[53] |
M. Wyczalkowski, Z. Chen, B. Filas, V. Varner and L. Taber,
Computational models for mechanics of morphogenesis, Birth Defects Res C Embryo Today, 96 (2012), 132-152.
doi: 10.1002/bdrc.21013. |
[54] |
G. Xie and L. Wang,
Necessary and sufficient conditions for controllability and observability of switched impulsive control systems, IEEE Transactions on Automatic Control, 49 (2004), 960-966.
doi: 10.1109/TAC.2004.829656. |
[55] |
Z. Yang and M. Blanke,
A unified approach to controllability analysis for hybrid control systems, Nonlinear Analysis: Hybrid Systems, 1 (2007), 212-222.
doi: 10.1016/j.nahs.2006.08.002. |
[56] |
M. Zarandi, A. Bonakdar and I. Stiharu, Investigations on natural frequencies of individual spherical and ellipsoidal bakery yeast cells, in Proceedings of the COMSOL Conference 2010 Boston, 2010. |
show all references
References:
[1] |
R. Araujo and D. McElwain,
A history of the study of solid tumour growth: The contribution of mathematical modelling, Bull. Math. Biol., 66 (2004), 1039-1091.
doi: 10.1016/j.bulm.2003.11.002. |
[2] |
A. Auley, Z. Werb and P. Mirkes,
Characterization of the unusually rapid cell cycles during rat gastrulation, Development, 117 (1993), 873-883.
|
[3] |
A. Bafico and S. Aaronson, Holland-Frei Cancer Medicine, 6th edition, BC Decker, 2003. |
[4] |
S. Banerjee, R. Cohn and M. Bernfield,
Basal lamina of embryonic salivary epithelia. production by the epithelium and role in maintaining lobular morphology, The Journal of Cell Biology, 73 (1977), 445-463.
|
[5] |
E. Bianconi, A. Piovesan, F. Facchin, A. Beraudi, R. Casadei, F. Frabetti, L. Vitale, M. Pelleri, S. Tassani, F. Piva, S. Perez-Amodio, P. Strippoli and S. Canaider,
An estimation of the number of cells in the human body, Ann Hum Biol., 40 (2013), 463-471.
doi: 10.3109/03014460.2013.807878. |
[6] |
G. Brodland, X. Chen, P. Lee and M. Marsden,
From genes to neural tube defects (ntds): Insights from multiscale computational modeling, HFSP J, 4 (2010), 142-152.
|
[7] |
R. Chaturvedi, C. Huang, B. Kazmierczak, T. Schneider, J. Izaguirre, T. Glimm, H. Hentschel, J. Glazier, S. Newman and M. Alber,
On multiscale approaches to three-dimensional modelling of morphogenesis, J R Soc Interface, 2 (2005), 237-253.
doi: 10.1098/rsif.2005.0033. |
[8] |
H. Chen and G. Brodland,
Cell-level finite element studies of viscous cells in planar aggregates, J Biomech Eng, 122 (2000), 394-401.
doi: 10.1115/1.1286563. |
[9] |
M. Chyba, M. Kobayashi, F. Mercier, J. Rader, A. Tamura-Sato, G. Telleschi and Y. Kwon,
A new approach to modeling morphogenesis using control theory, Special volume of the São Paulo Journal of Mathematical Sciences in honor of Prof. Waldyr Oliva,, 5 (2011), 281-315.
doi: 10.11606/issn.2316-9028.v5i2p281-315. |
[10] |
P. Ciarletta, M. Ben Amar and M. Labouesse,
Continuum model of epithelial morphogenesis during caenorhabditis elegans embryonic elongation, Phil. Trans. R. Soc. A, 367 (2009), 3379-3400.
doi: 10.1098/rsta.2009.0088. |
[11] |
D. Clausi and G. Brodland,
Mechanical evaluation of theories of neurulation using computer simulations, Development, 118 (1993), 1013-1023.
|
[12] |
I. Decimo, G. Fumagalli, V. Berton, M. Krampera and F. Bifari,
Meninges: from protective membrane to stem cell niche, American Journal of Stem Cells, 1 (2012), 92-105.
|
[13] |
V. Douet, E. Arikawa-Hirasawa and F. Mercier,
Fractone-heparan sulfates mediate bmp-7 inhibition of cell proliferation in the adult subventricular zone, Neuroscience Letters, 528 (2012), 120-125.
doi: 10.1016/j.neulet.2012.08.077. |
[14] |
M. Fitch and J. Silver,
Glial cell extracellular matrix: Boundaries for axon growth in development and regeneration, Cell and Tissue Research, 290 (1997), 379-384.
|
[15] |
H. Frieboes, X. Zheng, C. Sun, B. Tromberg, R. Gatenby and V. Cristini,
An integrated computational/experimental model of tumor invasion, Cancer Res, 66 (2006), 1597-1604.
doi: 10.1158/0008-5472.CAN-05-3166. |
[16] |
F. Gage,
Neurogenesis in the adult brain, The Journal of Neuroscience, 22 (2002), 612-613.
|
[17] |
T. Henzinger,
The theory of hybrid automata, Logic in Computer Science. LICS '96. Proceedings. Eleventh Annual IEEE Symposium, (1996), 278-292.
doi: 10.1109/LICS.1996.561342. |
[18] |
D. Ingber, J. Madri and J. Jamieson,
Role of basal lamina in neoplastic disorganization of tissue architecture, Proc. Natl. Acad. Sci. USA, 78 (1981), 3901-3905.
doi: 10.1073/pnas.78.6.3901. |
[19] |
A. Jacobson, G. Oster, G. Odell and L. Cheng,
Neurulation and the cortical tractor model for epithelial folding, Journal of Embryology and Experimental Morphology, 96 (1986), 19-49.
|
[20] |
K. Johansson, M. Egerstedt, J. Lygeros and S. Sastry,
On the regularization of zeno hybrid automata, System & Control Letters, 38 (1999), 141-150.
doi: 10.1016/S0167-6911(99)00059-6. |
[21] |
K. Johansson, J. Lygeros, S. Sastry and M. Egerstedt,
Simulation of zeno hybrid automata, Decision and Control, 4 (1999), 3538-3543.
doi: 10.1109/CDC.1999.827900. |
[22] |
G. Kempermann, L. Wiskott and F. Gage,
Functional significance of adult neurogenesis, Current Opinion in Neurobiology, 14 (2004), 186-191.
doi: 10.1016/j.conb.2004.03.001. |
[23] |
A. Kerever, J. Schnack, D. Vellinga, N. Ichikawa, C. Moon, E. Arikawa-Hirasawa, J. Efird and F. Mercier,
Novel extracellular matrix structures in the neural stem cell niche capture the neurogenic factor fibroblast growth factor 2 from the extracellular milieu, Stem Cells, 25 (2007), 2146-2157.
doi: 10.1634/stemcells.2007-0082. |
[24] |
Y. Kim, M. Stolarska and H. Othmer,
A hybrid model for tumor spheroid growth in vitro i: Theoretical development and early results, Mathematical Models and Methods in Applied Sciences, 17 (2007), 1773-1798.
doi: 10.1142/S0218202507002479. |
[25] |
L. Li, W. Dong, Y. Ji, Z. Zhang and L. Tong,
Minimal-energy driving strategy for high-speed electric train with hybrid system model, IEEE Transactions on Intelligent Transportation Systems, 14 (2013), 1642-1653.
|
[26] |
H. Lin and P. Antsaklis,
Hybrid dynamical systems: An introduction to control and verification, Foundations and Trends in Systems and Control, 1 (2014), 1-172.
|
[27] |
J. Lygeros, K. Johansson, S. Sastry and M. Egerstedt,
On the existence of executions of hybrid automata, Decision and Control, 3 (1999), 2249-2254.
doi: 10.1109/CDC.1999.831255. |
[28] |
J. Lygeros, K. Johansson, S. Simic, J. Zhang and S. Sastry,
Continuity and invariance in hybrid automata, Decision and Control, 1 (2001), 340-345.
doi: 10.1109/CDC.2001.980123. |
[29] |
J. Lygeros, K. Johansson, S. Simic, J. Zhang and S. Sastry,
Dynamical properties of hybrid automata, Automatic Control, IEEE Transactions, 48 (2003), 2-17.
doi: 10.1109/TAC.2002.806650. |
[30] |
J. Lygeros, S. Sastry and C. Tomlin, Hybrid Systems: Foundations, Advanced Topics, and Applications, Springer Verlag, 2012.
![]() |
[31] |
J. Meitzen, K. Pflepsen, C. Stern, R. Meisel and P. Mermelstein,
Measurements of neuron soma size and density in rat dorsal striatum, nucleus accumbens core and nucleus accumbens shell: Differences between striatal region and brain hemisphere, but not sex, Neuroscience Letters, 487 (2011), 177-181.
doi: 10.1016/j.neulet.2010.10.017. |
[32] |
F. Mercier and E. Arikawa-Hirakawa,
Heparan sulfate niche for cell proliferation in the adult brain, Neuroscience Letters, 510 (2012), 67-72.
doi: 10.1016/j.neulet.2011.12.046. |
[33] |
F. Mercier, J. Kitasako and G. Hatton,
Anatomy of the brain neurogenic zones revisited: Fractones and the fibroblast/macrophage network, J Comp Neurol, 451 (2002), 170-188.
doi: 10.1002/cne.10342. |
[34] |
F. Mercier, J. Kitasako and G. Hatton,
Fractones and other basal laminae in the hypothalamus, J Comp Neurol, 455 (2003), 324-340.
doi: 10.1002/cne.10496. |
[35] |
H. Minkowski, Space and time, in The Principle of Relativity, Calcutta University Press, 1920, 70-88, Trans. M Saha. |
[36] |
G. Oster,
On the crawling of cells, Journal of Embryology and Experimental Morphology, 83 (1984), 329-364.
|
[37] |
E. Palsson, Single-Cell-Based Models in Biology and Medicine, Mathematics and Biosciences in Interaction, 2007.
doi: 10.1007/978-3-7643-8123-3. |
[38] |
J. Piovesan, C. Abdallah and H. Tanner,
Preliminary results on interconnected hybrid systems, Control and Automation, (2008), 101-106.
doi: 10.1109/MED.2008.4602157. |
[39] |
J. Piovesan, C. Abdallah and H. Tanner,
Modeling multi-agent systems with hybrid interacting dynamics, American Control Conference, (2009), 3644-3649.
doi: 10.1109/ACC.2009.5160419. |
[40] |
J. Piovesan, H. Tanner and C. Abdallah,
Discrete asymptotic abstractions of hybrid systems, Decision and Control, (2006), 917-922.
doi: 10.1109/CDC.2006.377733. |
[41] |
N. Poplawski, M. Swat, J. Gens and J. Glazier,
Adhesion between cells, diffusion of growth factors, and elasticity of the aer produce the paddle shape of the chick limb, Physica A, 373 (2007), 521-532.
doi: 10.1016/j.physa.2006.05.028. |
[42] |
J. Rader, Dynamic Modelling Of Neural Morphogenesis Using Mathematical Control Theory, Master's thesis, University of Hawai'i, 2011. |
[43] |
K. Rejniak and A. Anderson,
Hybrid models of tumor growth, Wiley Interdiscip Rev Syst Biol Med, 3 (2011), 115-125.
doi: 10.1002/wsbm.102. |
[44] |
C. Ronse and M. Tajine,
Discretization in hausdorff space, Journal of Mathematical Imaging and Vision, 12 (2000), 219-242.
doi: 10.1023/A:1008366032284. |
[45] |
J. Sanes,
Extracellular matrix molecules that influence neural development, Ann. Rev. Neurosci, 12 (1989), 491-516.
doi: 10.1146/annurev.ne.12.030189.002423. |
[46] |
M. Stolarska, Y. Kim and H. Othmer,
Multi-scale models of cell and tissue dynamics, Phil. Trans. R. Soc. A, 367 (2009), 3525-3553.
doi: 10.1098/rsta.2009.0095. |
[47] |
A. Teel, A. Subbaraman and A. Sferlazza,
Stability analysis for stochastic hybrid systems: A survey, Automatica, 50 (2014), 2435-2456.
doi: 10.1016/j.automatica.2014.08.006. |
[48] |
S. Tripakis and T. Dang, Modeling, verification and testing using timed and hybrid automata, in Model-Based Design of Embedded Systems (ed. M. P. Nicolescu G), CRC Press, 2009,383-436.
doi: 10.1201/9781420067859-c13. |
[49] |
A. Voss-Bohme,
Multi-scale modeling in morphogenesis: A critical analysis of the cellular potts model, PLoS ONE, 7 (2012), e42852.
doi: 10.1371/journal.pone.0042852. |
[50] |
R. Vracko,
Basal lamina scaffold-anatomy and significance for maintenance of orderly tissue structure, Am J Pathol, 77 (1974), 313-346.
|
[51] |
D. Walker, S. Wood, J. Southgate, M. Holcombe and R. Smallwood,
An integrated agent-mathematical model of the effect of intercellular signalling via the epidermal growth factor receptor on cell proliferation, J Theor Biol, 242 (2006), 774-789.
doi: 10.1016/j.jtbi.2006.04.020. |
[52] |
J. Ward and J. King,
Mathematical modelling of avascular-tumour growth, IMA J Math Appl Med Biol, 14 (1997), 39-69.
doi: 10.1093/imammb/14.1.39. |
[53] |
M. Wyczalkowski, Z. Chen, B. Filas, V. Varner and L. Taber,
Computational models for mechanics of morphogenesis, Birth Defects Res C Embryo Today, 96 (2012), 132-152.
doi: 10.1002/bdrc.21013. |
[54] |
G. Xie and L. Wang,
Necessary and sufficient conditions for controllability and observability of switched impulsive control systems, IEEE Transactions on Automatic Control, 49 (2004), 960-966.
doi: 10.1109/TAC.2004.829656. |
[55] |
Z. Yang and M. Blanke,
A unified approach to controllability analysis for hybrid control systems, Nonlinear Analysis: Hybrid Systems, 1 (2007), 212-222.
doi: 10.1016/j.nahs.2006.08.002. |
[56] |
M. Zarandi, A. Bonakdar and I. Stiharu, Investigations on natural frequencies of individual spherical and ellipsoidal bakery yeast cells, in Proceedings of the COMSOL Conference 2010 Boston, 2010. |
















[1] |
Achilles Beros, Monique Chyba, Kari Noe. Co-evolving cellular automata for morphogenesis. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2053-2071. doi: 10.3934/dcdsb.2019084 |
[2] |
José Ignacio Tello. Mathematical analysis of a model of morphogenesis. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 343-361. doi: 10.3934/dcds.2009.25.343 |
[3] |
Elena Izquierdo-Kulich, Margarita Amigó de Quesada, Carlos Manuel Pérez-Amor, José Manuel Nieto-Villar. Morphogenesis and aggressiveness of cervix carcinoma. Mathematical Biosciences & Engineering, 2011, 8 (4) : 987-997. doi: 10.3934/mbe.2011.8.987 |
[4] |
Elena Izquierdo-Kulich, José Manuel Nieto-Villar. Morphogenesis of the tumor patterns. Mathematical Biosciences & Engineering, 2008, 5 (2) : 299-313. doi: 10.3934/mbe.2008.5.299 |
[5] |
T.K. Subrahmonian Moothathu. Homogeneity of surjective cellular automata. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 195-202. doi: 10.3934/dcds.2005.13.195 |
[6] |
Achilles Beros, Monique Chyba, Oleksandr Markovichenko. Controlled cellular automata. Networks and Heterogeneous Media, 2019, 14 (1) : 1-22. doi: 10.3934/nhm.2019001 |
[7] |
Marcus Pivato. Invariant measures for bipermutative cellular automata. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 723-736. doi: 10.3934/dcds.2005.12.723 |
[8] |
Ana I. Muñoz, José Ignacio Tello. Mathematical analysis and numerical simulation of a model of morphogenesis. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1035-1059. doi: 10.3934/mbe.2011.8.1035 |
[9] |
Bernard Host, Alejandro Maass, Servet Martínez. Uniform Bernoulli measure in dynamics of permutative cellular automata with algebraic local rules. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1423-1446. doi: 10.3934/dcds.2003.9.1423 |
[10] |
Marcelo Sobottka. Right-permutative cellular automata on topological Markov chains. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1095-1109. doi: 10.3934/dcds.2008.20.1095 |
[11] |
Xinxin Tan, Shujuan Li, Sisi Liu, Zhiwei Zhao, Lisa Huang, Jiatai Gang. Dynamic simulation of a SEIQR-V epidemic model based on cellular automata. Numerical Algebra, Control and Optimization, 2015, 5 (4) : 327-337. doi: 10.3934/naco.2015.5.327 |
[12] |
P. Alonso Ruiz, Y. Chen, H. Gu, R. S. Strichartz, Z. Zhou. Analysis on hybrid fractals. Communications on Pure and Applied Analysis, 2020, 19 (1) : 47-84. doi: 10.3934/cpaa.2020004 |
[13] |
Thomas I. Seidman, Olaf Klein. Periodic solutions of isotone hybrid systems. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 483-493. doi: 10.3934/dcdsb.2013.18.483 |
[14] |
David Kinderlehrer, Michał Kowalczyk. The Janossy effect and hybrid variational principles. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 153-176. doi: 10.3934/dcdsb.2009.11.153 |
[15] |
Panagiotis Stinis. A hybrid method for the inviscid Burgers equation. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 793-799. doi: 10.3934/dcds.2003.9.793 |
[16] |
Shin-Ichiro Ei, Kei Nishi, Yasumasa Nishiura, Takashi Teramoto. Annihilation of two interfaces in a hybrid system. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 857-869. doi: 10.3934/dcdss.2015.8.857 |
[17] |
William Clark, Anthony Bloch, Leonardo Colombo. A Poincaré-Bendixson theorem for hybrid systems. Mathematical Control and Related Fields, 2020, 10 (1) : 27-45. doi: 10.3934/mcrf.2019028 |
[18] |
Akinori Awazu. Input-dependent wave propagations in asymmetric cellular automata: Possible behaviors of feed-forward loop in biological reaction network. Mathematical Biosciences & Engineering, 2008, 5 (3) : 419-427. doi: 10.3934/mbe.2008.5.419 |
[19] |
Lianwen Wang. Approximate controllability and approximate null controllability of semilinear systems. Communications on Pure and Applied Analysis, 2006, 5 (4) : 953-962. doi: 10.3934/cpaa.2006.5.953 |
[20] |
Roger Brockett. Controllability with quadratic drift. Mathematical Control and Related Fields, 2013, 3 (4) : 433-446. doi: 10.3934/mcrf.2013.3.433 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]