Advanced Search
Article Contents
Article Contents

Modelling multi-cellular growth using morphological analysis

  • * Corresponding author: Alexandra Fronville

    * Corresponding author: Alexandra Fronville 
Abstract Full Text(HTML) Figure(3) Related Papers Cited by
  • The goal of this work is to introduce a mathematical model of multicellular developmental design based on morphological analysis in order to study the robustness of multi-cellular organism development.

    In this model each cell is a controlled system and has the same information, an ordered list of cell type. Cells perceive their neighbours during the growth process and decide to divide in a direction given by the reading advancement of the virtual genetic material and depending on the complex interplay between genetic, epigenetic and environment.

    Cells can perform distinct functions but in our simulator, two cell types just differ by there color and by permuting the segmentation direction according to the virtual genetic material and the epigenetic control. The switching on and switching off of genes depends on the environment of the cell.The multi-cellular organism has to reach a shape in a given environment to which it has to adapt.

    We present in this paper an algorithm based model which is implemented in a virtual 3D-environment. Moreover, the algorithm follows the principle of inertia in that the cells progress through the reading of its virtual genetic material after a punctuated equilibrium or when its viability is at stake.

    Mathematics Subject Classification: Primary:92C17, 92B99;Secondary:93C55.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Statechart diagram

    Figure 2.  French Flag growth

    Figure 3.  Gastrulation

  •   J. -P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhauser, 1990.
      J. -P. Aubin, Viability Theory, Birkhauser, 1991.
      J. -P. Aubin, Mutational and Morphological Analysis: Tools for Shape Regulation and Morphogenesis, Birkhauser, 2000. doi: 10.1007/978-1-4612-1576-9.
      J. -P. Aubin, A. Bayen and P. Saint-Pierre, Viability Theory: New Directions, Springer, 2011. doi: 10.1007/978-3-642-16684-6.
      G. Beurier, F. Michel and J. Ferber, A morphogenesis model for multiagent embryogeny, in: Artificiel Life (ALife X), 2006.
      J. Ferber, Multi-Agent System: An Introduction to Distributed Artificial Intelligence, 1999.
      A. Fronville , F. Harrouet , A. Desilles  and  P. Deloor , Simulation tool for morphological analysis, ESM, 2010 (2010) , 127-132. 
      A. Fronville, A. Sarr, P. Ballet and V. Rodin, Mutational analysis-inspired algorithms for cells self-organization towards a dynamic under viability constraints, Self-Adaptive and Self-Organizing Systems (SASO), IEEE Sixth International Conference on, 2012 (2012). doi: 10.1109/SASO.2012.15.
      A. Gorre , Evolutions of tubes under operability constraints, Journal of Mathematical Analysis and Applications, 216 (1997) , 1-22.  doi: 10.1006/jmaa.1997.5476.
      G. M. P. Hoare, N Jennings Foundations of Distributed Artificial Intelligence, 1996.
      A. Lesne , Robustness: Confronting lessons from physics and biology, Biological Reviews, 83 (2008) , 509-532.  doi: 10.1111/j.1469-185X.2008.00052.x.
      T. Lorenz, Mutational Analysis A Joint Framework for Cauchy Problems In and Beyond Vector Spaces, Springer, 2010. doi: 10.1007/978-3-642-12471-6.
      N. Olivier , M. A. Luengo-Oroz , L. Duloquin , E. Faure , T. Savy , I. Veilleux , X. Solinas , D. Débarre , P. Bourgine , A. Santos , N. Peyriéras  and  E. Beaurepaire , Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy, Science, 329 (2010) , 967-971.  doi: 10.1126/science.1189428.
      J. Tisseau, Virtual reality --in virtuo autonomy --, Ph. D. thesis, University of Rennes I, 2001.
      L. Wolpert, Principles of development, 2006.
  • 加载中



Article Metrics

HTML views(749) PDF downloads(270) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint