
-
Previous Article
Optimality of (s, S) policies with nonlinear processes
- DCDS-B Home
- This Issue
-
Next Article
Optimisation modelling of cancer growth
A review of dynamic Stackelberg game models
1. | Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA |
2. | The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA |
Dynamic Stackelberg game models have been used to study sequential decision making in noncooperative games in various fields. In this paper we give relevant dynamic Stackelberg game models, and review their applications to operations management and marketing channels. A common feature of these applications is the specification of the game structure: a decentralized channel consists of a manufacturer and independent retailers, and a sequential decision process with a state dynamics. In operations management, Stackelberg games have been used to study inventory issues, such as wholesale and retail pricing strategies, outsourcing, and learning effects in dynamic environments. The underlying demand typically has a growing trend or seasonal variation. In marketing, dynamic Stackelberg games have been used to model cooperative advertising programs, store brand and national brand advertising strategies, shelf space allocation, and pricing and advertising decisions. The demand dynamics are usually extensions of the classic advertising capital models or sales-advertising response models. We begin each section by introducing the relevant dynamic Stackelberg game formulation along with the definition of the equilibrium used, and then review the models and results appearing in the literature.
References:
[1] |
K. Anand, R. Anupindi and Y. Bassok, Strategic inventories in vertical contracts, Management Science, 54 (2008), 1792-1804. Google Scholar |
[2] |
A. Bagchi,
Stackelberg Differential Games in Economic Models Springer-Verlag, New York, 1994.
doi: 10.1007/BFb0009151. |
[3] |
T. Başar and A. Haurie,
Feedback equilibria in differential games with structural and modal uncertainties, in Advances in Large Scale Systems (eds. Jose B. Cruz Jr.), JAE Press Inc., Connecticut, 1 (1984), 163-201.
|
[4] |
T. Başar and G. J. Olsder,
Dynamic Noncooperative Game Theory 2nd ed. , SIAM, Philadelphia, PA, 1999. |
[5] |
F. M. Bass,
A new product growth for model consumer durables, Chapter: Mathematical Models in Marketing, 132 (1976), 351-353.
doi: 10.1007/978-3-642-51565-1_107. |
[6] |
A. Bensoussan, S. Chen, A. Chutani and S. P. Sethi, Feedback Stackelberg-Nash equilibria in mixed leadership games with an application to cooperative advertising, working paper, The University of Texas at Dallas, 2016. Google Scholar |
[7] |
A. Bensoussan, S. Chen and S. P. Sethi,
Linear quadratic differential games with mixed leadership: The open-loop solution, Numerical Algebra, Control and Optimization, 3 (2013), 95-108.
doi: 10.3934/naco.2013.3.95. |
[8] |
A. Bensoussan, S. Chen and S. P. Sethi,
Feedback Stackelberg solutions of infinite-horizon stochastic differential games, in Models and Methods in Economics and Management Science (eds. F. El Ouardighi and K. Kogan), International Series in Operations Research and Management Science 198, Springer, (2014), 3-15.
doi: 10.1007/978-3-319-00669-7_1. |
[9] |
A. Bensoussan, S. Chen and S. P. Sethi,
The maximum principle for global solutions of stochastic Stackelberg differential games, SIAM Journal on Control and Optimization, 53 (2015), 1956-1981.
doi: 10.1137/140958906. |
[10] |
M. Bergen and G. John,
Understanding cooperative advertising participation rates in conventional channels, Journal of Marketing Research, 34 (1997), 357-369.
doi: 10.2307/3151898. |
[11] |
P. D. Berger,
Vertical cooperative advertising ventures, Journal of Marketing Research, 9 (1972), 309-312.
doi: 10.2307/3149542. |
[12] |
M. Breton, R. Jarrar and G. Zaccour,
A note on feedback sequential equilibria in a Lanchester model with empirical application, Management Science, 52 (2006), 804-811.
doi: 10.1287/mnsc.1050.0475. |
[13] |
P. Chintagunta and D. Jain,
A dynamic model of channel member strategies for marketing expenditures, Marketing Science, 11 (1992), 168-188.
doi: 10.1287/mksc.11.2.168. |
[14] |
K. R. Deal,
Optimizing advertising expenditures in a dynamic duopoly, Operations Research, 27 (1979), 682-692.
doi: 10.1287/opre.27.4.682. |
[15] |
K. R. Deal, S. P. Sethi and G. L. Thompson,
A bilinear-quadratic differential game in advertising, in Control Theory in Mathematical Economics (eds. P.-T. Liu and J. G. Sutinen), Marcel Dekker, Inc., New York, NY., 47 (1979), 91-109.
|
[16] |
N. A. Derzko, S. P. Sethi and G. L. Thompson,
Necessary and sufficient conditions for optimal control of quasilinear partial differential systems, Journal of Optimal Theory and Applications, 43 (1984), 89-101.
doi: 10.1007/BF00934748. |
[17] |
V. S. Desai,
Marketing-production decisions under independent and integrated channel structure, Annals of Operations Research, 34 (1992), 275-306.
doi: 10.1007/BF02098183. |
[18] |
V. S. Desai,
Interactions between members of a marketing-production channel under seasonal demand, European Journal of Operational Research, 90 (1996), 115-141.
doi: 10.1016/0377-2217(94)00308-4. |
[19] |
E. Dockner, S. Jorgensen, N. V. Long and G. Sorger,
Differential Games in Economics and Management Science Cambridge University Press, 2000.
doi: 10.1017/CBO9780511805127. |
[20] |
J. Eliashberg and R. Steinberg,
Marketing-production decisions in an industrial channel of distribution, Management Science, 33 (1987), 981-1000.
doi: 10.1287/mnsc.33.8.981. |
[21] |
G. M. Erickson,
Empirical analysis of closed-loop duopoly advertising strategies, Management Science, 38 (1992), 1732-1749.
doi: 10.1287/mnsc.38.12.1732. |
[22] |
W. H. Fleming and R. W. Rishel, Deterministic and stochastic optimal control, in Stochastic Modelling and Applied Probability (eds. P. W. Glynn and Y. Le Jan), V. 1, Springer-Verlag, New York, NY, 1975. |
[23] |
G. E. Fruchter and S. Kalish,
Closed-loop advertising strategies in a duopoly, Management Science, 43 (1997), 54-63.
doi: 10.1287/mnsc.43.1.54. |
[24] |
J. V. Gray, B. Tomlin and A. V. Roth,
Outsourcing to a powerful contract manufacturer: The effect of learning-by-doing, Production and Operations Management, 18 (2009), 487-505.
doi: 10.1111/j.1937-5956.2009.01024.x. |
[25] |
G. J. Gutierrez and X. He,
Life-cycle channel coordination issues in launching an innovative durable product, Production and Operations Management, 20 (2011), 268-279.
doi: 10.1111/j.1937-5956.2010.01197.x. |
[26] |
X. He, A. Prasad, S. P. Sethi and G. J. Gutierrez, A survey of differential game models in supply and marketing channels, Journal of Systems Science and Systems Engineering, 16 (2007), 385-413. Google Scholar |
[27] |
X. He and S. P. Sethi,
Dynamic slotting and pricing decisions in a durable product supply chain, Journal of Optimization Theory and Applications, 137 (2008), 363-379.
doi: 10.1007/s10957-007-9330-x. |
[28] |
X. He, A. Prasad and S. P. Sethi,
Cooperative advertising and pricing in a dynamic stochastic supply chain: Feedback Stackelberg strategies, Production and Operations Management, 18 (2009), 78-94.
doi: 10.1109/PICMET.2008.4599783. |
[29] |
Z. Huang, S. X. Li and V. Mahajan,
An analysis of manufacturer-retailer supply chain coordination in cooperative advertising, Decision Sciences, 33 (2002), 469-494.
doi: 10.1111/j.1540-5915.2002.tb01652.x. |
[30] |
R. Jarrar, G. Martin-Herran and G. Zaccour,
Markov perfect equilibrium advertising strategies of Lanchester duopoly model: A technical note, Management Science, 50 (2004), 995-1000.
doi: 10.1287/mnsc.1040.0249. |
[31] |
S. Jorgensen, S. P. Sigue and G. Zaccour, Dynamic cooperative advertising in a channel, Journal of Retailing, 76 (2000), 71-92. Google Scholar |
[32] |
S. Jorgensen, S. P. Sigue and G. Zaccour,
Stackelberg leadership in a marketing channel, International Game Theory Review, 3 (2001), 13-26.
doi: 10.1142/S0219198901000282. |
[33] |
S. Jorgensen, S. Taboubi and G. Zaccour,
Retail promotions with negative brand image effects: Is cooperation possible?, European Journal of Operational Research, 150 (2003), 395-405.
doi: 10.1016/S0377-2217(02)00641-0. |
[34] |
S. Jorgensen, S. Taboubi and G. Zaccour,
Incentives for retailer promotion in a marketing channel, Annals of the International Society of dynamic Games, 8 (2006), 365-378.
doi: 10.1007/0-8176-4501-2_19. |
[35] |
S. Karray and G. Zaccour,
A differential game of advertising for national and store brands, in Dynamic Games: Theory and Applicatoins (eds. A. Haurie and G. Zaccour), Springer, New York, NY, 10 (2005), 213-229.
doi: 10.1007/0-387-24602-9_11. |
[36] |
K. Kogan and C. S. Tapiero,
Supply Chain Games: Operations Management and Risk Valuation Springer, New York, NY, 2007.
doi: 10.1007/978-0-387-72776-9. |
[37] |
K. Kogan and C. S. Tapiero, Co-investment in Supply Chain Infrastructure working paper, Bar Ilan University, Israel, 2007. Google Scholar |
[38] |
H. L. Lee, V. Padmanabhan, T. A. Taylor and S. Whang,
Price protection in the personal computer industry, Management Science, 46 (2000), 467-482.
doi: 10.1287/mnsc.46.4.467.12058. |
[39] |
G. Leitmann,
On generalized Stackelberg strategies, J. Optimization Theory and Applications, 26 (1978), 637-643.
doi: 10.1007/BF00933155. |
[40] |
T. Li, S. P. Sethi and X. He,
Dynamic pricing, production, and channel coordination with stochastic learning, Production and Operations Management, 24 (2015), 857-882.
doi: 10.1111/poms.12320. |
[41] |
C. T. Linh and Y. Hong,
Channel coordination through a revenue sharing contract in a two-period newsboy problem, European Journal of Operational Research, 198 (2009), 822-829.
doi: 10.1016/j.ejor.2008.10.019. |
[42] |
J. D. C. Little, Aggregate advertising models: The state of the art, Operations Research, 27 (1979), 629-667. Google Scholar |
[43] |
X. Lu, J. S. Song and A. Regan,
Rebate, returns and price protection policies in channel coordination, IIE Transactions, 39 (2007), 111-124.
doi: 10.1080/07408170600710408. |
[44] |
G. Martin-Herran and S. Taboubi,
Incentive strategies for shelf-space allocation in duopolies, in Dynamic Games Theory and Applications (eds. A. Haurie and G. Zaccour), Springer, New York, NY, 10 (2005), 231-253.
doi: 10.1007/0-387-24602-9_12. |
[45] |
M. Nerlove and K. J. Arrow,
Optimal advertising policy under dynamic conditions, Mathematical Models in Marketing, 132 (1976), 167-168.
doi: 10.1007/978-3-642-51565-1_54. |
[46] |
G. P. Papavassilopoulos and J. B. Cruz,
Nonclassical control problems and Stackelberg games, IEEE Transactions on Automatic Control, 24 (1979), 155-166.
doi: 10.1109/TAC.1979.1101986. |
[47] |
D. Pekelman, Simultaneous price production in channels, Marketing Science, 7 (1974), 335-355. Google Scholar |
[48] |
S. J. Rubio,
On coincidence of feedback Nash equilibria and Stackelberg equilibria in economic applications of differential games, Journal of Optimization Theory and Applications, 128 (2006), 203-221.
doi: 10.1007/s10957-005-7565-y. |
[49] |
S. P. Sethi,
Deterministic and stochastic optimization of a dynamic advertising model, Optimal Control Applications and Methods, 4 (1983), 179-184.
doi: 10.1002/oca.4660040207. |
[50] |
S. P. Sethi and G. L. Thompson,
Optimal Control Theory: Applications to Management Science and Economics 2$^{nd}$ edition, Springer, New York, 2000. |
[51] |
M. Simaan and J. B. Cruz,
On the Stackelberg strategy in nonzero-sum games, J. Optimization Theory and Applications, 11 (1973), 533-555.
doi: 10.1007/BF00935665. |
[52] |
M. Simaan and J. B. Cruz,
Additional aspects of the Stackelberg strategy in nonzero-sum games, J. Optimization Theory and Applications, 11 (1973), 613-626.
doi: 10.1007/BF00935561. |
[53] |
H. V. Stackelberg, The Theory of the Market Economy translated by Peacock A. T. , William Hodge and Co. , London, 1952. Google Scholar |
[54] |
T. A. Taylor,
Channel coordination under price protection, midlife returns, and end-of-life returns in dynamic markets, Management Science, 47 (2001), 1220-1234.
doi: 10.1287/mnsc.47.9.1220.9786. |
[55] |
J. T. Teng and G. L. Thompson,
Oligopoly models for optimal advertising when production costs obey a learning curve, Management Science, 29 (1983), 1087-1101.
doi: 10.1287/mnsc.29.9.1087. |
[56] |
M. L. Vidale and H. B. Wolfe,
An operations research study of sales response to advertising, Operations Research, 5 (1957), 370-381.
doi: 10.1287/opre.5.3.370. |
[57] |
H. Von Stackelberg, Marktform und Gleichgewicht Springer, Vienna, 1934. (An English translation appeared in The Theory of the Market Economy Oxford University Press, Oxford, England, 1952. ) Google Scholar |
show all references
References:
[1] |
K. Anand, R. Anupindi and Y. Bassok, Strategic inventories in vertical contracts, Management Science, 54 (2008), 1792-1804. Google Scholar |
[2] |
A. Bagchi,
Stackelberg Differential Games in Economic Models Springer-Verlag, New York, 1994.
doi: 10.1007/BFb0009151. |
[3] |
T. Başar and A. Haurie,
Feedback equilibria in differential games with structural and modal uncertainties, in Advances in Large Scale Systems (eds. Jose B. Cruz Jr.), JAE Press Inc., Connecticut, 1 (1984), 163-201.
|
[4] |
T. Başar and G. J. Olsder,
Dynamic Noncooperative Game Theory 2nd ed. , SIAM, Philadelphia, PA, 1999. |
[5] |
F. M. Bass,
A new product growth for model consumer durables, Chapter: Mathematical Models in Marketing, 132 (1976), 351-353.
doi: 10.1007/978-3-642-51565-1_107. |
[6] |
A. Bensoussan, S. Chen, A. Chutani and S. P. Sethi, Feedback Stackelberg-Nash equilibria in mixed leadership games with an application to cooperative advertising, working paper, The University of Texas at Dallas, 2016. Google Scholar |
[7] |
A. Bensoussan, S. Chen and S. P. Sethi,
Linear quadratic differential games with mixed leadership: The open-loop solution, Numerical Algebra, Control and Optimization, 3 (2013), 95-108.
doi: 10.3934/naco.2013.3.95. |
[8] |
A. Bensoussan, S. Chen and S. P. Sethi,
Feedback Stackelberg solutions of infinite-horizon stochastic differential games, in Models and Methods in Economics and Management Science (eds. F. El Ouardighi and K. Kogan), International Series in Operations Research and Management Science 198, Springer, (2014), 3-15.
doi: 10.1007/978-3-319-00669-7_1. |
[9] |
A. Bensoussan, S. Chen and S. P. Sethi,
The maximum principle for global solutions of stochastic Stackelberg differential games, SIAM Journal on Control and Optimization, 53 (2015), 1956-1981.
doi: 10.1137/140958906. |
[10] |
M. Bergen and G. John,
Understanding cooperative advertising participation rates in conventional channels, Journal of Marketing Research, 34 (1997), 357-369.
doi: 10.2307/3151898. |
[11] |
P. D. Berger,
Vertical cooperative advertising ventures, Journal of Marketing Research, 9 (1972), 309-312.
doi: 10.2307/3149542. |
[12] |
M. Breton, R. Jarrar and G. Zaccour,
A note on feedback sequential equilibria in a Lanchester model with empirical application, Management Science, 52 (2006), 804-811.
doi: 10.1287/mnsc.1050.0475. |
[13] |
P. Chintagunta and D. Jain,
A dynamic model of channel member strategies for marketing expenditures, Marketing Science, 11 (1992), 168-188.
doi: 10.1287/mksc.11.2.168. |
[14] |
K. R. Deal,
Optimizing advertising expenditures in a dynamic duopoly, Operations Research, 27 (1979), 682-692.
doi: 10.1287/opre.27.4.682. |
[15] |
K. R. Deal, S. P. Sethi and G. L. Thompson,
A bilinear-quadratic differential game in advertising, in Control Theory in Mathematical Economics (eds. P.-T. Liu and J. G. Sutinen), Marcel Dekker, Inc., New York, NY., 47 (1979), 91-109.
|
[16] |
N. A. Derzko, S. P. Sethi and G. L. Thompson,
Necessary and sufficient conditions for optimal control of quasilinear partial differential systems, Journal of Optimal Theory and Applications, 43 (1984), 89-101.
doi: 10.1007/BF00934748. |
[17] |
V. S. Desai,
Marketing-production decisions under independent and integrated channel structure, Annals of Operations Research, 34 (1992), 275-306.
doi: 10.1007/BF02098183. |
[18] |
V. S. Desai,
Interactions between members of a marketing-production channel under seasonal demand, European Journal of Operational Research, 90 (1996), 115-141.
doi: 10.1016/0377-2217(94)00308-4. |
[19] |
E. Dockner, S. Jorgensen, N. V. Long and G. Sorger,
Differential Games in Economics and Management Science Cambridge University Press, 2000.
doi: 10.1017/CBO9780511805127. |
[20] |
J. Eliashberg and R. Steinberg,
Marketing-production decisions in an industrial channel of distribution, Management Science, 33 (1987), 981-1000.
doi: 10.1287/mnsc.33.8.981. |
[21] |
G. M. Erickson,
Empirical analysis of closed-loop duopoly advertising strategies, Management Science, 38 (1992), 1732-1749.
doi: 10.1287/mnsc.38.12.1732. |
[22] |
W. H. Fleming and R. W. Rishel, Deterministic and stochastic optimal control, in Stochastic Modelling and Applied Probability (eds. P. W. Glynn and Y. Le Jan), V. 1, Springer-Verlag, New York, NY, 1975. |
[23] |
G. E. Fruchter and S. Kalish,
Closed-loop advertising strategies in a duopoly, Management Science, 43 (1997), 54-63.
doi: 10.1287/mnsc.43.1.54. |
[24] |
J. V. Gray, B. Tomlin and A. V. Roth,
Outsourcing to a powerful contract manufacturer: The effect of learning-by-doing, Production and Operations Management, 18 (2009), 487-505.
doi: 10.1111/j.1937-5956.2009.01024.x. |
[25] |
G. J. Gutierrez and X. He,
Life-cycle channel coordination issues in launching an innovative durable product, Production and Operations Management, 20 (2011), 268-279.
doi: 10.1111/j.1937-5956.2010.01197.x. |
[26] |
X. He, A. Prasad, S. P. Sethi and G. J. Gutierrez, A survey of differential game models in supply and marketing channels, Journal of Systems Science and Systems Engineering, 16 (2007), 385-413. Google Scholar |
[27] |
X. He and S. P. Sethi,
Dynamic slotting and pricing decisions in a durable product supply chain, Journal of Optimization Theory and Applications, 137 (2008), 363-379.
doi: 10.1007/s10957-007-9330-x. |
[28] |
X. He, A. Prasad and S. P. Sethi,
Cooperative advertising and pricing in a dynamic stochastic supply chain: Feedback Stackelberg strategies, Production and Operations Management, 18 (2009), 78-94.
doi: 10.1109/PICMET.2008.4599783. |
[29] |
Z. Huang, S. X. Li and V. Mahajan,
An analysis of manufacturer-retailer supply chain coordination in cooperative advertising, Decision Sciences, 33 (2002), 469-494.
doi: 10.1111/j.1540-5915.2002.tb01652.x. |
[30] |
R. Jarrar, G. Martin-Herran and G. Zaccour,
Markov perfect equilibrium advertising strategies of Lanchester duopoly model: A technical note, Management Science, 50 (2004), 995-1000.
doi: 10.1287/mnsc.1040.0249. |
[31] |
S. Jorgensen, S. P. Sigue and G. Zaccour, Dynamic cooperative advertising in a channel, Journal of Retailing, 76 (2000), 71-92. Google Scholar |
[32] |
S. Jorgensen, S. P. Sigue and G. Zaccour,
Stackelberg leadership in a marketing channel, International Game Theory Review, 3 (2001), 13-26.
doi: 10.1142/S0219198901000282. |
[33] |
S. Jorgensen, S. Taboubi and G. Zaccour,
Retail promotions with negative brand image effects: Is cooperation possible?, European Journal of Operational Research, 150 (2003), 395-405.
doi: 10.1016/S0377-2217(02)00641-0. |
[34] |
S. Jorgensen, S. Taboubi and G. Zaccour,
Incentives for retailer promotion in a marketing channel, Annals of the International Society of dynamic Games, 8 (2006), 365-378.
doi: 10.1007/0-8176-4501-2_19. |
[35] |
S. Karray and G. Zaccour,
A differential game of advertising for national and store brands, in Dynamic Games: Theory and Applicatoins (eds. A. Haurie and G. Zaccour), Springer, New York, NY, 10 (2005), 213-229.
doi: 10.1007/0-387-24602-9_11. |
[36] |
K. Kogan and C. S. Tapiero,
Supply Chain Games: Operations Management and Risk Valuation Springer, New York, NY, 2007.
doi: 10.1007/978-0-387-72776-9. |
[37] |
K. Kogan and C. S. Tapiero, Co-investment in Supply Chain Infrastructure working paper, Bar Ilan University, Israel, 2007. Google Scholar |
[38] |
H. L. Lee, V. Padmanabhan, T. A. Taylor and S. Whang,
Price protection in the personal computer industry, Management Science, 46 (2000), 467-482.
doi: 10.1287/mnsc.46.4.467.12058. |
[39] |
G. Leitmann,
On generalized Stackelberg strategies, J. Optimization Theory and Applications, 26 (1978), 637-643.
doi: 10.1007/BF00933155. |
[40] |
T. Li, S. P. Sethi and X. He,
Dynamic pricing, production, and channel coordination with stochastic learning, Production and Operations Management, 24 (2015), 857-882.
doi: 10.1111/poms.12320. |
[41] |
C. T. Linh and Y. Hong,
Channel coordination through a revenue sharing contract in a two-period newsboy problem, European Journal of Operational Research, 198 (2009), 822-829.
doi: 10.1016/j.ejor.2008.10.019. |
[42] |
J. D. C. Little, Aggregate advertising models: The state of the art, Operations Research, 27 (1979), 629-667. Google Scholar |
[43] |
X. Lu, J. S. Song and A. Regan,
Rebate, returns and price protection policies in channel coordination, IIE Transactions, 39 (2007), 111-124.
doi: 10.1080/07408170600710408. |
[44] |
G. Martin-Herran and S. Taboubi,
Incentive strategies for shelf-space allocation in duopolies, in Dynamic Games Theory and Applications (eds. A. Haurie and G. Zaccour), Springer, New York, NY, 10 (2005), 231-253.
doi: 10.1007/0-387-24602-9_12. |
[45] |
M. Nerlove and K. J. Arrow,
Optimal advertising policy under dynamic conditions, Mathematical Models in Marketing, 132 (1976), 167-168.
doi: 10.1007/978-3-642-51565-1_54. |
[46] |
G. P. Papavassilopoulos and J. B. Cruz,
Nonclassical control problems and Stackelberg games, IEEE Transactions on Automatic Control, 24 (1979), 155-166.
doi: 10.1109/TAC.1979.1101986. |
[47] |
D. Pekelman, Simultaneous price production in channels, Marketing Science, 7 (1974), 335-355. Google Scholar |
[48] |
S. J. Rubio,
On coincidence of feedback Nash equilibria and Stackelberg equilibria in economic applications of differential games, Journal of Optimization Theory and Applications, 128 (2006), 203-221.
doi: 10.1007/s10957-005-7565-y. |
[49] |
S. P. Sethi,
Deterministic and stochastic optimization of a dynamic advertising model, Optimal Control Applications and Methods, 4 (1983), 179-184.
doi: 10.1002/oca.4660040207. |
[50] |
S. P. Sethi and G. L. Thompson,
Optimal Control Theory: Applications to Management Science and Economics 2$^{nd}$ edition, Springer, New York, 2000. |
[51] |
M. Simaan and J. B. Cruz,
On the Stackelberg strategy in nonzero-sum games, J. Optimization Theory and Applications, 11 (1973), 533-555.
doi: 10.1007/BF00935665. |
[52] |
M. Simaan and J. B. Cruz,
Additional aspects of the Stackelberg strategy in nonzero-sum games, J. Optimization Theory and Applications, 11 (1973), 613-626.
doi: 10.1007/BF00935561. |
[53] |
H. V. Stackelberg, The Theory of the Market Economy translated by Peacock A. T. , William Hodge and Co. , London, 1952. Google Scholar |
[54] |
T. A. Taylor,
Channel coordination under price protection, midlife returns, and end-of-life returns in dynamic markets, Management Science, 47 (2001), 1220-1234.
doi: 10.1287/mnsc.47.9.1220.9786. |
[55] |
J. T. Teng and G. L. Thompson,
Oligopoly models for optimal advertising when production costs obey a learning curve, Management Science, 29 (1983), 1087-1101.
doi: 10.1287/mnsc.29.9.1087. |
[56] |
M. L. Vidale and H. B. Wolfe,
An operations research study of sales response to advertising, Operations Research, 5 (1957), 370-381.
doi: 10.1287/opre.5.3.370. |
[57] |
H. Von Stackelberg, Marktform und Gleichgewicht Springer, Vienna, 1934. (An English translation appeared in The Theory of the Market Economy Oxford University Press, Oxford, England, 1952. ) Google Scholar |

Optimal/ equilibrium levels | Unit advertising cost | ||
Denotes the | Production function, |
||
Advertising level | Unit inventory/ backlog cost | ||
Local advertising | Unit inventory holding cost | ||
Cost of production/advertising | Unit backlog cost | ||
Demand, Revenue rate | Margin | ||
Goodwill | Retail price | ||
Current -value Hamiltonians | Manufacturer's share of revenue | ||
Inventory level | Effectiveness of advertising | ||
Objective functional | Time parameters | ||
Infrastructure capital | Start & end of promotional period | ||
Labor force | Leader's control variable | ||
Market size | Follower's control variable | ||
Number of firms | Optimal response of the follower | ||
Production rate, Processing rate | Wholesale price | ||
Capacity limit | State variable; Sales rate | ||
Shelf space | External market influence | ||
Salvage value, Unit salvage value | Demand parameters | ||
Planning horizon | Internal market influence | ||
Optimal response of the follower | Decay rate | ||
Value function | M's share of R's advertising cost | ||
Cumulative sales | Adjoint variable, Shadow price | ||
Market potential/Advertising effectiveness | Instantaneous profit rate | ||
Problem parameters | Discount rate | ||
Advertising effectiveness | Adjoint variable, Shadow price | ||
Price sensitivity/Advertising effectiveness | Coefficient of incentive strategy | ||
Unit production/advertising cost | Feasible set of controls | ||
Order quantity | Learning efficiency |
Optimal/ equilibrium levels | Unit advertising cost | ||
Denotes the | Production function, |
||
Advertising level | Unit inventory/ backlog cost | ||
Local advertising | Unit inventory holding cost | ||
Cost of production/advertising | Unit backlog cost | ||
Demand, Revenue rate | Margin | ||
Goodwill | Retail price | ||
Current -value Hamiltonians | Manufacturer's share of revenue | ||
Inventory level | Effectiveness of advertising | ||
Objective functional | Time parameters | ||
Infrastructure capital | Start & end of promotional period | ||
Labor force | Leader's control variable | ||
Market size | Follower's control variable | ||
Number of firms | Optimal response of the follower | ||
Production rate, Processing rate | Wholesale price | ||
Capacity limit | State variable; Sales rate | ||
Shelf space | External market influence | ||
Salvage value, Unit salvage value | Demand parameters | ||
Planning horizon | Internal market influence | ||
Optimal response of the follower | Decay rate | ||
Value function | M's share of R's advertising cost | ||
Cumulative sales | Adjoint variable, Shadow price | ||
Market potential/Advertising effectiveness | Instantaneous profit rate | ||
Problem parameters | Discount rate | ||
Advertising effectiveness | Adjoint variable, Shadow price | ||
Price sensitivity/Advertising effectiveness | Coefficient of incentive strategy | ||
Unit production/advertising cost | Feasible set of controls | ||
Order quantity | Learning efficiency |
Section | Dynamics | L's decisions | F's decisions | Solution |
2.2.1 | Seasonal | Production rate, Price | Price | OLSE |
2.2.2 | Seasonal | Production rate, Price | Price | OLSE |
2.2.3 | Seasonal | Production rate, Price | Price | OLSE |
2.2.4 | General | Price, Production rate | Price | OLSE |
2.2.5 | General | Price | Order quantity | OLSE |
2.2.6 | General | Price | Order quantity | OLSE |
2.2.7 | General | Price | Price | OLSE |
2.2.8 | General | Labor, investment | Labor, investment | OLSE |
2.2.9 | Bass-type | Price | Price | OLSE |
2.2.10 | Bass type | Price | Price | OLSE |
2.3.1 | NA dynamics | Participation rate, Ad. effort | Ad. effort | FSE |
2.3.2 | NA dynamics | Ad. effort, Price | Ad. effort, Price | FSE |
2.3.3 | NA dynamics | Participation rate, Ad. effort | Ad. effort, Price | FSE |
2.3.4 | NA dynamics | Ad. effort, (coop), Price | Ad. effort, Price | FSE |
2.3.5 | NA dynamics | Ad. effort, Incentive | Shelf-space | FSE |
2.3.6 | NA dynamics | Ad. effort | Ad. effort | FSE |
2.3.7 | Lanchester type | Ad. effort | Ad. effort | FSE |
2.3.8 | Sethi 1983 | Participation rate, Price | Ad. effort, Price | FSE |
2.3.9 | Sethi 1983 | Participation&Ad. rate | Participation&Ad. rate | FSE |
2.5.1 | Inventory | Price | Order Quantity, Price | OLSE, FSE |
2.5.2 | Production Cost | Price | Order quantity | FSE |
2.5.3 | Inv., Prod. Cost | Price, Production quantity | Price, Order quantity | FSE |
1 The symbol OLSE = Open-loop Stackelberg equilibrium and FSE = Feedback Stackelberg equilibrium. |
Section | Dynamics | L's decisions | F's decisions | Solution |
2.2.1 | Seasonal | Production rate, Price | Price | OLSE |
2.2.2 | Seasonal | Production rate, Price | Price | OLSE |
2.2.3 | Seasonal | Production rate, Price | Price | OLSE |
2.2.4 | General | Price, Production rate | Price | OLSE |
2.2.5 | General | Price | Order quantity | OLSE |
2.2.6 | General | Price | Order quantity | OLSE |
2.2.7 | General | Price | Price | OLSE |
2.2.8 | General | Labor, investment | Labor, investment | OLSE |
2.2.9 | Bass-type | Price | Price | OLSE |
2.2.10 | Bass type | Price | Price | OLSE |
2.3.1 | NA dynamics | Participation rate, Ad. effort | Ad. effort | FSE |
2.3.2 | NA dynamics | Ad. effort, Price | Ad. effort, Price | FSE |
2.3.3 | NA dynamics | Participation rate, Ad. effort | Ad. effort, Price | FSE |
2.3.4 | NA dynamics | Ad. effort, (coop), Price | Ad. effort, Price | FSE |
2.3.5 | NA dynamics | Ad. effort, Incentive | Shelf-space | FSE |
2.3.6 | NA dynamics | Ad. effort | Ad. effort | FSE |
2.3.7 | Lanchester type | Ad. effort | Ad. effort | FSE |
2.3.8 | Sethi 1983 | Participation rate, Price | Ad. effort, Price | FSE |
2.3.9 | Sethi 1983 | Participation&Ad. rate | Participation&Ad. rate | FSE |
2.5.1 | Inventory | Price | Order Quantity, Price | OLSE, FSE |
2.5.2 | Production Cost | Price | Order quantity | FSE |
2.5.3 | Inv., Prod. Cost | Price, Production quantity | Price, Order quantity | FSE |
1 The symbol OLSE = Open-loop Stackelberg equilibrium and FSE = Feedback Stackelberg equilibrium. |
[1] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[2] |
David W. K. Yeung, Yingxuan Zhang, Hongtao Bai, Sardar M. N. Islam. Collaborative environmental management for transboundary air pollution problems: A differential levies game. Journal of Industrial & Management Optimization, 2021, 17 (2) : 517-531. doi: 10.3934/jimo.2019121 |
[3] |
Jiannan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model. Journal of Industrial & Management Optimization, 2021, 17 (2) : 765-777. doi: 10.3934/jimo.2019133 |
[4] |
Zhongbao Zhou, Yanfei Bai, Helu Xiao, Xu Chen. A non-zero-sum reinsurance-investment game with delay and asymmetric information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 909-936. doi: 10.3934/jimo.2020004 |
[5] |
Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051 |
[6] |
Jing Zhang, Jianquan Lu, Jinde Cao, Wei Huang, Jianhua Guo, Yun Wei. Traffic congestion pricing via network congestion game approach. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1553-1567. doi: 10.3934/dcdss.2020378 |
[7] |
Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020347 |
[8] |
Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025 |
[9] |
Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028 |
[10] |
Manuel Friedrich, Martin Kružík, Ulisse Stefanelli. Equilibrium of immersed hyperelastic solids. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021003 |
[11] |
Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020048 |
[12] |
Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260 |
[13] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020110 |
[14] |
Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021004 |
[15] |
Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020164 |
[16] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[17] |
Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164 |
[18] |
Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002 |
[19] |
Ruofeng Rao, Shouming Zhong. Input-to-state stability and no-inputs stabilization of delayed feedback chaotic financial system involved in open and closed economy. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1375-1393. doi: 10.3934/dcdss.2020280 |
[20] |
Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020158 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]