January  2017, 22(1): 187-198. doi: 10.3934/dcdsb.2017009

Z-Eigenvalue Inclusion Theorems for Tensors

1. 

School of Management Science, Qufu Normal University, Rizhao, Shandong 276826, China

2. 

Department of Mathematics and Statistics, Curtin University, Perth, Australia

* Corresponding author: Guanglu Zhou

Received  December 2015 Revised  May 2016 Published  December 2016

Fund Project: The first author is supported by the natural science foundation of Shandong Province grant ZR2016AM10 and the Fundamental Research Funds for Qufu Normal University grant xkj201415, xkj201314

In this paper, we establish $Z$-eigenvalue inclusion theorems for general tensors, which reveal some crucial differences between $Z$-eigenvalues and $H$-eigenvalues. As an application, we obtain upper bounds for the largest $Z$-eigenvalue of a weakly symmetric nonnegative tensor, which are sharper than existing upper bounds.

Citation: Gang Wang, Guanglu Zhou, Louis Caccetta. Z-Eigenvalue Inclusion Theorems for Tensors. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 187-198. doi: 10.3934/dcdsb.2017009
References:
[1]

L. Bloy and R. Verma, On computing the underlying fiber directions from the diffusion orientation distribution function, in Medical Image Computing and Computer-Assisted Intervention, Springer, 5241 (2008), 1-8. doi: 10.1007/978-3-540-85988-8_1.

[2]

K. C. ChangK. Pearson and T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Communications in Mathematical Sciences, 6 (2008), 507-520.

[3]

K. C. ChangK. Pearson and T. Zhang, Some variational principles for Z-eigenvalues of nonnegative tensors, Linear Algebra and its Applications, 438 (2013), 4166-4182.

[4]

S. FriedlandS. Gaubert and L. Han, Perron-Frobenius theorem for nonnegative multilinear forms and extensions, Linear Algebra and its Applications, 438 (2013), 738-749.

[5]

E. Kofidis and P. Regalia, On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM Journal on Matrix Analysis and Applications, 23 (2002), 863-884. doi: 10.1137/S0895479801387413.

[6]

T. Kolda and J. Mayo, Shifted power method for computing tensor eigenpairs, SIAM Journal on Matrix Analysis and Applications, 32 (2011), 1095-1124. doi: 10.1137/100801482.

[7]

J. He and T. Huang, Upper bound for the largest Z-eigenvalue of positive tensors, Applied Mathematics Letters, 38 (2014), 110-114. doi: 10.1016/j.aml.2014.07.012.

[8]

L. H. Lim, Singular values and eigenvalues of tensors: a variational approach. Proceedings of the IEEE International Workshop on Computational Advances, in Multi-Sensor Adaptive Processing, Puerto Vallarta, (2005), 129-132.

[9]

Y. LiuG. Zhou and N. F. Ibrahim, An always convergent algorithm for the largest eigenvalue of an irreducible nonnegative tensor, Journal of Computational and Applied Mathematics, 235 (2010), 286-292.

[10]

G. LiL. Qi and G. Yu, The Z-eigenvalues of a symmetric tensor and its application to spectral hypergraph theory, Numerical Linear Algebra with Applications, 20 (2013), 1001-1029.

[11]

C. LiY. Li and X. Kong, New eigenvalue inclusion sets for tensors, Numerical Linear Algebra with Applications, 21 (2014), 39-50. doi: 10.1002/nla.1858.

[12]

M. NgL. Qi and G. Zhou, Finding the largest eigenvalue of a nonnegative tensor, SIAM Journal on Matrix Analysis and Applications, 31 (2009), 1090-1099.

[13]

Q. NiL. Qi and F. Wang, An eigenvalue method for testing the positive definiteness of a multivariate form, IEEE Transactions on Automatic Control, 53 (2008), 1096-1107.

[14]

L. Qi, Eigenvalues of a real supersymmetric tensor, Journal of Symbolic Computation, 40 (2005), 1302-1324. doi: 10.1016/j.jsc.2005.05.007.

[15]

L. QiG. Yu and E. X. Wu, Higher order positive semi-definite diffusion tensor imaging, SIAM Journal on Imaging Sciences, 3 (2010), 416-433. doi: 10.1137/090755138.

[16]

L. QiF. Wang and Y. Wang, Z-eigenvalue methods for a global polynomial optimization problem, Mathematical Programming, 118 (2009), 301-316. doi: 10.1007/s10107-007-0193-6.

[17]

Y. Song and L. Qi, Spectral properties of positively homogeneous operators induced by higher order tensors, SIAM Journal on Matrix Analysis and Applications, 34 (2013), 1581-1595. doi: 10.1137/130909135.

[18]

R. S. Varga, Gergorin and His Circles Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-642-17798-9.

[19]

Z. Wang and W. Wu, Bounds for the greatest eigenvalue of positive tensors, Journal of Industrial and Managenment Optimization, 10 (2014), 1031-1039.

[20]

Y. Yang and Q. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors, SIAM Journal on Matrix Analysis and Applications, 31 (2010), 2517-2530. doi: 10.1137/090778766.

[21]

T. Zhang and G. Golub, Rank-1 approximation of higher-order tensors, SIAM Journal on Matrix Analysis and Applications, 23 (2001), 534-550. doi: 10.1137/S0895479899352045.

[22]

L. Zhang and L. Qi, Linear convergence of an algorithm for computing the largest eigenvalue of a nonnegative tensor, Numerical Linear Algebra and Its Applications, 19 (2012), 830-841.

[23]

G. ZhouL. Qi and S. Wu, On the largest eigenvalue of a symmetric nonnegative tensor, Numerical Linear Algebra with Applications, 20 (2013), 913-928. doi: 10.1002/nla.1885.

show all references

References:
[1]

L. Bloy and R. Verma, On computing the underlying fiber directions from the diffusion orientation distribution function, in Medical Image Computing and Computer-Assisted Intervention, Springer, 5241 (2008), 1-8. doi: 10.1007/978-3-540-85988-8_1.

[2]

K. C. ChangK. Pearson and T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Communications in Mathematical Sciences, 6 (2008), 507-520.

[3]

K. C. ChangK. Pearson and T. Zhang, Some variational principles for Z-eigenvalues of nonnegative tensors, Linear Algebra and its Applications, 438 (2013), 4166-4182.

[4]

S. FriedlandS. Gaubert and L. Han, Perron-Frobenius theorem for nonnegative multilinear forms and extensions, Linear Algebra and its Applications, 438 (2013), 738-749.

[5]

E. Kofidis and P. Regalia, On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM Journal on Matrix Analysis and Applications, 23 (2002), 863-884. doi: 10.1137/S0895479801387413.

[6]

T. Kolda and J. Mayo, Shifted power method for computing tensor eigenpairs, SIAM Journal on Matrix Analysis and Applications, 32 (2011), 1095-1124. doi: 10.1137/100801482.

[7]

J. He and T. Huang, Upper bound for the largest Z-eigenvalue of positive tensors, Applied Mathematics Letters, 38 (2014), 110-114. doi: 10.1016/j.aml.2014.07.012.

[8]

L. H. Lim, Singular values and eigenvalues of tensors: a variational approach. Proceedings of the IEEE International Workshop on Computational Advances, in Multi-Sensor Adaptive Processing, Puerto Vallarta, (2005), 129-132.

[9]

Y. LiuG. Zhou and N. F. Ibrahim, An always convergent algorithm for the largest eigenvalue of an irreducible nonnegative tensor, Journal of Computational and Applied Mathematics, 235 (2010), 286-292.

[10]

G. LiL. Qi and G. Yu, The Z-eigenvalues of a symmetric tensor and its application to spectral hypergraph theory, Numerical Linear Algebra with Applications, 20 (2013), 1001-1029.

[11]

C. LiY. Li and X. Kong, New eigenvalue inclusion sets for tensors, Numerical Linear Algebra with Applications, 21 (2014), 39-50. doi: 10.1002/nla.1858.

[12]

M. NgL. Qi and G. Zhou, Finding the largest eigenvalue of a nonnegative tensor, SIAM Journal on Matrix Analysis and Applications, 31 (2009), 1090-1099.

[13]

Q. NiL. Qi and F. Wang, An eigenvalue method for testing the positive definiteness of a multivariate form, IEEE Transactions on Automatic Control, 53 (2008), 1096-1107.

[14]

L. Qi, Eigenvalues of a real supersymmetric tensor, Journal of Symbolic Computation, 40 (2005), 1302-1324. doi: 10.1016/j.jsc.2005.05.007.

[15]

L. QiG. Yu and E. X. Wu, Higher order positive semi-definite diffusion tensor imaging, SIAM Journal on Imaging Sciences, 3 (2010), 416-433. doi: 10.1137/090755138.

[16]

L. QiF. Wang and Y. Wang, Z-eigenvalue methods for a global polynomial optimization problem, Mathematical Programming, 118 (2009), 301-316. doi: 10.1007/s10107-007-0193-6.

[17]

Y. Song and L. Qi, Spectral properties of positively homogeneous operators induced by higher order tensors, SIAM Journal on Matrix Analysis and Applications, 34 (2013), 1581-1595. doi: 10.1137/130909135.

[18]

R. S. Varga, Gergorin and His Circles Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-642-17798-9.

[19]

Z. Wang and W. Wu, Bounds for the greatest eigenvalue of positive tensors, Journal of Industrial and Managenment Optimization, 10 (2014), 1031-1039.

[20]

Y. Yang and Q. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors, SIAM Journal on Matrix Analysis and Applications, 31 (2010), 2517-2530. doi: 10.1137/090778766.

[21]

T. Zhang and G. Golub, Rank-1 approximation of higher-order tensors, SIAM Journal on Matrix Analysis and Applications, 23 (2001), 534-550. doi: 10.1137/S0895479899352045.

[22]

L. Zhang and L. Qi, Linear convergence of an algorithm for computing the largest eigenvalue of a nonnegative tensor, Numerical Linear Algebra and Its Applications, 19 (2012), 830-841.

[23]

G. ZhouL. Qi and S. Wu, On the largest eigenvalue of a symmetric nonnegative tensor, Numerical Linear Algebra with Applications, 20 (2013), 913-928. doi: 10.1002/nla.1885.

Table1 
$\mathcal{L}_{1,2}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$$\mathcal{L}_{1,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq \frac{3+\sqrt{29}}{2}\}$
$\mathcal{L}_{2,1}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$$\mathcal{L}_{2,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$
$\mathcal{L}_{3,1}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 2+2\sqrt{2}\}$$\mathcal{L}_{3,2}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 5\}$
$\mathcal{L}_{1,2}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$$\mathcal{L}_{1,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq \frac{3+\sqrt{29}}{2}\}$
$\mathcal{L}_{2,1}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$$\mathcal{L}_{2,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$
$\mathcal{L}_{3,1}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 2+2\sqrt{2}\}$$\mathcal{L}_{3,2}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 5\}$
Table2 
$\mathcal{M}_{1,2}(\mathcal{A})=\{\lambda\in C: 3\leq |\lambda|\leq 4\}$$\mathcal{M}_{1,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq \frac{7+\sqrt{5}}{2}\}$
$\mathcal{M}_{2,1}(\mathcal{A})=\{\lambda\in C: 2\leq |\lambda|\leq 4\}$$\mathcal{M}_{2,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$
$\mathcal{M}_{3,1}(\mathcal{A})=\{\lambda\in C: 3+\sqrt{3}\leq |\lambda|\leq 5\}$$\mathcal{M}_{3,2}(\mathcal{A})=\{\lambda\in C: 3\leq |\lambda|\leq 5\}$.
$\mathcal{M}_{1,2}(\mathcal{A})=\{\lambda\in C: 3\leq |\lambda|\leq 4\}$$\mathcal{M}_{1,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq \frac{7+\sqrt{5}}{2}\}$
$\mathcal{M}_{2,1}(\mathcal{A})=\{\lambda\in C: 2\leq |\lambda|\leq 4\}$$\mathcal{M}_{2,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$
$\mathcal{M}_{3,1}(\mathcal{A})=\{\lambda\in C: 3+\sqrt{3}\leq |\lambda|\leq 5\}$$\mathcal{M}_{3,2}(\mathcal{A})=\{\lambda\in C: 3\leq |\lambda|\leq 5\}$.
Table3 
$\mathcal{N}_{1,2}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq \frac{3+\sqrt{21}}{2}\}$$\mathcal{N}_{1,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq \frac{3+\sqrt{29}}{2} $
$\mathcal{N}_{2,1}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$$\mathcal{N}_{2,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq \frac{3+\sqrt{29}}{2} $
$\mathcal{N}_{3,1}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 2+2\sqrt{2}\}$$\mathcal{N}_{3,2}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$.
$\mathcal{N}_{1,2}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq \frac{3+\sqrt{21}}{2}\}$$\mathcal{N}_{1,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq \frac{3+\sqrt{29}}{2} $
$\mathcal{N}_{2,1}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$$\mathcal{N}_{2,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq \frac{3+\sqrt{29}}{2} $
$\mathcal{N}_{3,1}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 2+2\sqrt{2}\}$$\mathcal{N}_{3,2}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$.
[1]

Yaotang Li, Suhua Li. Exclusion sets in the Δ-type eigenvalue inclusion set for tensors. Journal of Industrial & Management Optimization, 2019, 15 (2) : 507-516. doi: 10.3934/jimo.2018054

[2]

Gang Wang, Yuan Zhang. $ Z $-eigenvalue exclusion theorems for tensors. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-12. doi: 10.3934/jimo.2019039

[3]

Nur Fadhilah Ibrahim. An algorithm for the largest eigenvalue of nonhomogeneous nonnegative polynomials. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 75-91. doi: 10.3934/naco.2014.4.75

[4]

Caili Sang, Zhen Chen. $ E $-eigenvalue localization sets for tensors. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2019042

[5]

Chaoqian Li, Yaqiang Wang, Jieyi Yi, Yaotang Li. Bounds for the spectral radius of nonnegative tensors. Journal of Industrial & Management Optimization, 2016, 12 (3) : 975-990. doi: 10.3934/jimo.2016.12.975

[6]

Haitao Che, Haibin Chen, Yiju Wang. On the M-eigenvalue estimation of fourth-order partially symmetric tensors. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2018153

[7]

Zhen Wang, Wei Wu. Bounds for the greatest eigenvalue of positive tensors. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1031-1039. doi: 10.3934/jimo.2014.10.1031

[8]

Jonathan Meddaugh, Brian E. Raines. The structure of limit sets for $\mathbb{Z}^d$ actions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4765-4780. doi: 10.3934/dcds.2014.34.4765

[9]

Victor Kozyakin. Iterative building of Barabanov norms and computation of the joint spectral radius for matrix sets. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 143-158. doi: 10.3934/dcdsb.2010.14.143

[10]

Maria Fărcăşeanu, Mihai Mihăilescu, Denisa Stancu-Dumitru. Perturbed fractional eigenvalue problems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6243-6255. doi: 10.3934/dcds.2017270

[11]

Ravi P. Agarwal, Kanishka Perera, Zhitao Zhang. On some nonlocal eigenvalue problems. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 707-714. doi: 10.3934/dcdss.2012.5.707

[12]

Wei-Ming Ni, Xuefeng Wang. On the first positive Neumann eigenvalue. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 1-19. doi: 10.3934/dcds.2007.17.1

[13]

Robert Brooks and Eran Makover. The first eigenvalue of a Riemann surface. Electronic Research Announcements, 1999, 5: 76-81.

[14]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Dušan D. Repovš. Perturbations of nonlinear eigenvalue problems. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1403-1431. doi: 10.3934/cpaa.2019068

[15]

Fanxin Zeng, Xiaoping Zeng, Zhenyu Zhang, Guixin Xuan. Quaternary periodic complementary/Z-complementary sequence sets based on interleaving technique and Gray mapping. Advances in Mathematics of Communications, 2012, 6 (2) : 237-247. doi: 10.3934/amc.2012.6.237

[16]

Mihai Mihăilescu. An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue. Communications on Pure & Applied Analysis, 2011, 10 (2) : 701-708. doi: 10.3934/cpaa.2011.10.701

[17]

Yining Gu, Wei Wu. Partially symmetric nonnegative rectangular tensors and copositive rectangular tensors. Journal of Industrial & Management Optimization, 2019, 15 (2) : 775-789. doi: 10.3934/jimo.2018070

[18]

Quanyi Liang, Kairong Liu, Gang Meng, Zhikun She. Minimization of the lowest eigenvalue for a vibrating beam. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2079-2092. doi: 10.3934/dcds.2018085

[19]

Eugenia Pérez. On periodic Steklov type eigenvalue problems on half-bands and the spectral homogenization problem. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 859-883. doi: 10.3934/dcdsb.2007.7.859

[20]

François Blanchard, Wen Huang. Entropy sets, weakly mixing sets and entropy capacity. Discrete & Continuous Dynamical Systems - A, 2008, 20 (2) : 275-311. doi: 10.3934/dcds.2008.20.275

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (27)
  • HTML views (63)
  • Cited by (5)

Other articles
by authors

[Back to Top]