# American Institute of Mathematical Sciences

January  2017, 22(1): 187-198. doi: 10.3934/dcdsb.2017009

## Z-Eigenvalue Inclusion Theorems for Tensors

 1 School of Management Science, Qufu Normal University, Rizhao, Shandong 276826, China 2 Department of Mathematics and Statistics, Curtin University, Perth, Australia

* Corresponding author: Guanglu Zhou

Received  December 2015 Revised  May 2016 Published  December 2016

Fund Project: The first author is supported by the natural science foundation of Shandong Province grant ZR2016AM10 and the Fundamental Research Funds for Qufu Normal University grant xkj201415, xkj201314.

In this paper, we establish $Z$-eigenvalue inclusion theorems for general tensors, which reveal some crucial differences between $Z$-eigenvalues and $H$-eigenvalues. As an application, we obtain upper bounds for the largest $Z$-eigenvalue of a weakly symmetric nonnegative tensor, which are sharper than existing upper bounds.

Citation: Gang Wang, Guanglu Zhou, Louis Caccetta. Z-Eigenvalue Inclusion Theorems for Tensors. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 187-198. doi: 10.3934/dcdsb.2017009
##### References:

show all references

##### References:
 $\mathcal{L}_{1,2}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$ $\mathcal{L}_{1,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq \frac{3+\sqrt{29}}{2}\}$ $\mathcal{L}_{2,1}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$ $\mathcal{L}_{2,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$ $\mathcal{L}_{3,1}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 2+2\sqrt{2}\}$ $\mathcal{L}_{3,2}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 5\}$
 $\mathcal{L}_{1,2}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$ $\mathcal{L}_{1,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq \frac{3+\sqrt{29}}{2}\}$ $\mathcal{L}_{2,1}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$ $\mathcal{L}_{2,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$ $\mathcal{L}_{3,1}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 2+2\sqrt{2}\}$ $\mathcal{L}_{3,2}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 5\}$
 $\mathcal{M}_{1,2}(\mathcal{A})=\{\lambda\in C: 3\leq |\lambda|\leq 4\}$ $\mathcal{M}_{1,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq \frac{7+\sqrt{5}}{2}\}$ $\mathcal{M}_{2,1}(\mathcal{A})=\{\lambda\in C: 2\leq |\lambda|\leq 4\}$ $\mathcal{M}_{2,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$ $\mathcal{M}_{3,1}(\mathcal{A})=\{\lambda\in C: 3+\sqrt{3}\leq |\lambda|\leq 5\}$ $\mathcal{M}_{3,2}(\mathcal{A})=\{\lambda\in C: 3\leq |\lambda|\leq 5\}$.
 $\mathcal{M}_{1,2}(\mathcal{A})=\{\lambda\in C: 3\leq |\lambda|\leq 4\}$ $\mathcal{M}_{1,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq \frac{7+\sqrt{5}}{2}\}$ $\mathcal{M}_{2,1}(\mathcal{A})=\{\lambda\in C: 2\leq |\lambda|\leq 4\}$ $\mathcal{M}_{2,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$ $\mathcal{M}_{3,1}(\mathcal{A})=\{\lambda\in C: 3+\sqrt{3}\leq |\lambda|\leq 5\}$ $\mathcal{M}_{3,2}(\mathcal{A})=\{\lambda\in C: 3\leq |\lambda|\leq 5\}$.
 $\mathcal{N}_{1,2}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq \frac{3+\sqrt{21}}{2}\}$ $\mathcal{N}_{1,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq \frac{3+\sqrt{29}}{2}$ $\mathcal{N}_{2,1}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$ $\mathcal{N}_{2,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq \frac{3+\sqrt{29}}{2}$ $\mathcal{N}_{3,1}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 2+2\sqrt{2}\}$ $\mathcal{N}_{3,2}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$.
 $\mathcal{N}_{1,2}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq \frac{3+\sqrt{21}}{2}\}$ $\mathcal{N}_{1,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq \frac{3+\sqrt{29}}{2}$ $\mathcal{N}_{2,1}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$ $\mathcal{N}_{2,3}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq \frac{3+\sqrt{29}}{2}$ $\mathcal{N}_{3,1}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 2+2\sqrt{2}\}$ $\mathcal{N}_{3,2}(\mathcal{A})=\{\lambda\in C: |\lambda|\leq 4\}$.
 [1] Jun He, Guangjun Xu, Yanmin Liu. New Z-eigenvalue localization sets for tensors with applications. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021058 [2] Yaotang Li, Suhua Li. Exclusion sets in the Δ-type eigenvalue inclusion set for tensors. Journal of Industrial & Management Optimization, 2019, 15 (2) : 507-516. doi: 10.3934/jimo.2018054 [3] Chaoqian Li, Yajun Liu, Yaotang Li. Note on $Z$-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129 [4] Caili Sang, Zhen Chen. Optimal $Z$-eigenvalue inclusion intervals of tensors and their applications. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021075 [5] Gang Wang, Yuan Zhang. $Z$-eigenvalue exclusion theorems for tensors. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1987-1998. doi: 10.3934/jimo.2019039 [6] Nur Fadhilah Ibrahim. An algorithm for the largest eigenvalue of nonhomogeneous nonnegative polynomials. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 75-91. doi: 10.3934/naco.2014.4.75 [7] Caili Sang, Zhen Chen. $E$-eigenvalue localization sets for tensors. Journal of Industrial & Management Optimization, 2020, 16 (4) : 2045-2063. doi: 10.3934/jimo.2019042 [8] Chong Wang, Gang Wang, Lixia Liu. Sharp bounds on the minimum $M$-eigenvalue and strong ellipticity condition of elasticity $Z$-tensors-tensors. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021205 [9] Yuyan Yao, Gang Wang. Sharp upper bounds on the maximum $M$-eigenvalue of fourth-order partially symmetric nonnegative tensors. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021018 [10] Chaoqian Li, Yaqiang Wang, Jieyi Yi, Yaotang Li. Bounds for the spectral radius of nonnegative tensors. Journal of Industrial & Management Optimization, 2016, 12 (3) : 975-990. doi: 10.3934/jimo.2016.12.975 [11] Haitao Che, Haibin Chen, Yiju Wang. On the M-eigenvalue estimation of fourth-order partially symmetric tensors. Journal of Industrial & Management Optimization, 2020, 16 (1) : 309-324. doi: 10.3934/jimo.2018153 [12] Zhen Wang, Wei Wu. Bounds for the greatest eigenvalue of positive tensors. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1031-1039. doi: 10.3934/jimo.2014.10.1031 [13] Xifu Liu, Shuheng Yin, Hanyu Li. C-eigenvalue intervals for piezoelectric-type tensors via symmetric matrices. Journal of Industrial & Management Optimization, 2021, 17 (6) : 3349-3356. doi: 10.3934/jimo.2020122 [14] Haitao Che, Haibin Chen, Guanglu Zhou. New M-eigenvalue intervals and application to the strong ellipticity of fourth-order partially symmetric tensors. Journal of Industrial & Management Optimization, 2021, 17 (6) : 3685-3694. doi: 10.3934/jimo.2020139 [15] Jonathan Meddaugh, Brian E. Raines. The structure of limit sets for $\mathbb{Z}^d$ actions. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4765-4780. doi: 10.3934/dcds.2014.34.4765 [16] Jun He, Guangjun Xu, Yanmin Liu. Some inequalities for the minimum M-eigenvalue of elasticity M-tensors. Journal of Industrial & Management Optimization, 2020, 16 (6) : 3035-3045. doi: 10.3934/jimo.2019092 [17] Yannan Chen, Antal Jákli, Liqun Qi. The C-eigenvalue of third order tensors and its application in crystals. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021183 [18] Guimin Liu, Hongbin Lv. Bounds for spectral radius of nonnegative tensors using matrix-digragh-based approach. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021176 [19] Wanbin Tong, Hongjin He, Chen Ling, Liqun Qi. A nonmonotone spectral projected gradient method for tensor eigenvalue complementarity problems. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 425-437. doi: 10.3934/naco.2020042 [20] Victor Kozyakin. Iterative building of Barabanov norms and computation of the joint spectral radius for matrix sets. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 143-158. doi: 10.3934/dcdsb.2010.14.143

2020 Impact Factor: 1.327