January  2017, 22(1): 199-208. doi: 10.3934/dcdsb.2017010

Improved results on exponential stability of discrete-time switched delay systems

1. 

School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

2. 

Department of Mathematics and Statistics, Curtin University, Perth, WA 6845, Australia

3. 

School of Information Science and Engineering, Central South University, Changsha, Hunan 410083, China

* Corresponding author

Received  August 2015 Revised  May 2016 Published  December 2016

Fund Project: The work is supported by the National Natural Science Foundation of China (11171079) and the Australian Research Council (DP160102819).

In this paper, we study the exponential stability problem of discrete-time switched delay systems. Combining a multiple Lyapunov function method with a mode-dependent average dwell time technique, we develop novel sufficient conditions for exponential stability of the switched delay systems expressed by a set of numerically solvable linear matrix inequalities. Finally, numerical examples are presented to illustrate less conservativeness of the obtained results.

Citation: Xiang Xie, Honglei Xu, Xinming Cheng, Yilun Yu. Improved results on exponential stability of discrete-time switched delay systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 199-208. doi: 10.3934/dcdsb.2017010
References:
[1]

M. S. Branicky, Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Trans. Automat. Control, 43 (1998), 475-482.  doi: 10.1109/9.664150.  Google Scholar

[2]

Q. ChenL. Yu and W. Zhang, Delay-dependent output feedback guaranteed cost control for uncertain discrete-time systems with multiple time-varying delays, Control Theory & Applications, 1 (2007), 97-103.  doi: 10.1049/iet-cta:20050443.  Google Scholar

[3]

J. DaafouzP. Riedinger and C. Lung, Stability analysis and control synthesis for switched systems: A switched Lyapunov function approach, IEEE Trans. Automat. Control, 47 (2002), 1883-1887.  doi: 10.1109/TAC.2002.804474.  Google Scholar

[4]

R. A. DecarloM. S. BranickyS. Pettersson and B. Lennartson, Perspectives and results on the stability and stabilizability of hybrid systems, Proceedings of the IEEE, 88 (2000), 1069-1082.  doi: 10.1109/5.871309.  Google Scholar

[5]

D. Liberzon, Switching in Systems and Control, Springer, 2003. doi: 10.1007/978-1-4612-0017-8.  Google Scholar

[6]

D. LiberzonJ. P. Hespanha and A. S. Morse, Stability of switched systems: A Lie-algebraic condition, Systems & Control Letters, 37 (1999), 117-122.  doi: 10.1016/S0167-6911(99)00012-2.  Google Scholar

[7]

D. Liberzon and S. Morse, Basic problems in stability and design of switched systems, IEEE Control Syst., 19 (1999), 59-70.  doi: 10.1109/37.793443.  Google Scholar

[8]

H. Lin and P. J. Antsaklis, Stability and stabilizability of switched linear systems: A survey of recent results, IEEE Trans. Automat. Control, 54 (2009), 308-322.  doi: 10.1109/TAC.2008.2012009.  Google Scholar

[9]

W. MichielsV. V. Assche and S. I. Niculescu, Stabilization of time-delay systems with a controlled time-varying delay and applications, IEEE Trans. Automat. Control, 50 (2005), 493-504.  doi: 10.1109/TAC.2005.844723.  Google Scholar

[10]

S. Pettersson, Synthesis of switched linear systems, Proceedings on 42nd IEEE Conference on Decision and Control, (2003), 5283-5288.  doi: 10.1109/CDC.2003.1272477.  Google Scholar

[11]

X. SunJ. Zhao and D. J. Hill, Stability and $l_2$-gain analysis for switched delay systems: A delay-dependent method, Automatica, 42 (2006), 1769-1774.  doi: 10.1016/j.automatica.2006.05.007.  Google Scholar

[12]

M. Wicks and R. Decarlo, Solution of coupled Lyapunov equations for the stabilization of multimodal linear systems, Proceedings of the American Control Conference, 1997 (1997), 1709-1713.  doi: 10.1109/ACC.1997.610876.  Google Scholar

[13]

X. Xie, H. Xu and R. Zhang, Exponential stabilization of impulsive switched systems with time delays using guaranteed cost control Abstract and Applied Analysis, 2014 (2014), Art. ID 126836, 8 pp. doi: 10.1155/2014/126836.  Google Scholar

[14]

H. XuX. Liu and K. L. Teo, Delay independent stability criteria of impulsive switched systems with time-invariant delays, Math. Comput. Model., 47 (2008), 372-379.  doi: 10.1016/j.mcm.2007.04.011.  Google Scholar

[15]

H. XuX. Liu and K. L. Teo, Robust stability analysis of guaranteed cost control for impulsive switched systems, IEEE Trans. Syst., Man, and Cyber.-Part B, 35 (2008), 1419-1422.   Google Scholar

[16]

H. Xu, X. Xie and L. Shi, An MDADT-based approach for l2-gain analysis of discrete-time switched delay systems Mathematical Problems in Engineering, 2016 (2016), Art. ID 1673959, 8 pp. doi: 10.1155/2016/1673959.  Google Scholar

[17]

H. Yan, Robust exponential stability and l2-gain for switched discrete-time nonlinear cascade systems, 33rd Chinese Control Conference, (2014), 4198-4203.   Google Scholar

[18]

G. ZhaiX. Chen and H. Lin, Stability and l2 gain analysis of discrete-time switched systems, Transactions of the Institute of Systems, Control and Information engineers, 15 (2002), 117-125.   Google Scholar

[19]

G. ZhaiB. HuK. Yasuda and A. N. Michel, Stability analysis of switched systems with stable and unstable subsystems: An average dwell time approach, American Control Conference, 1 (2000), 200-204.  doi: 10.1109/ACC.2000.878825.  Google Scholar

[20]

L. ZhangE. K. Boukas and P. Shi, Exponential H filtering for uncertain discrete-time switched linear systems with average dwell time: A μ-dependent approach', International Journal of Robust and Nonlinear Control, 18 (2008), 1188-1207.  doi: 10.1002/rnc.1276.  Google Scholar

[21]

W. Zhang and L. Yu, Stability analysis for discrete-time switched time-delay system, Automatica, 45 (2009), 2265-2271.  doi: 10.1016/j.automatica.2009.05.027.  Google Scholar

[22]

X. ZhaoL. ZhangP. Shi and M. Liu, Stability and stabilization of switched linear systems with mode-dependent average dwell time, IEEE Trans. Automat. Control, 57 (2012), 1809-1815.  doi: 10.1109/TAC.2011.2178629.  Google Scholar

show all references

References:
[1]

M. S. Branicky, Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Trans. Automat. Control, 43 (1998), 475-482.  doi: 10.1109/9.664150.  Google Scholar

[2]

Q. ChenL. Yu and W. Zhang, Delay-dependent output feedback guaranteed cost control for uncertain discrete-time systems with multiple time-varying delays, Control Theory & Applications, 1 (2007), 97-103.  doi: 10.1049/iet-cta:20050443.  Google Scholar

[3]

J. DaafouzP. Riedinger and C. Lung, Stability analysis and control synthesis for switched systems: A switched Lyapunov function approach, IEEE Trans. Automat. Control, 47 (2002), 1883-1887.  doi: 10.1109/TAC.2002.804474.  Google Scholar

[4]

R. A. DecarloM. S. BranickyS. Pettersson and B. Lennartson, Perspectives and results on the stability and stabilizability of hybrid systems, Proceedings of the IEEE, 88 (2000), 1069-1082.  doi: 10.1109/5.871309.  Google Scholar

[5]

D. Liberzon, Switching in Systems and Control, Springer, 2003. doi: 10.1007/978-1-4612-0017-8.  Google Scholar

[6]

D. LiberzonJ. P. Hespanha and A. S. Morse, Stability of switched systems: A Lie-algebraic condition, Systems & Control Letters, 37 (1999), 117-122.  doi: 10.1016/S0167-6911(99)00012-2.  Google Scholar

[7]

D. Liberzon and S. Morse, Basic problems in stability and design of switched systems, IEEE Control Syst., 19 (1999), 59-70.  doi: 10.1109/37.793443.  Google Scholar

[8]

H. Lin and P. J. Antsaklis, Stability and stabilizability of switched linear systems: A survey of recent results, IEEE Trans. Automat. Control, 54 (2009), 308-322.  doi: 10.1109/TAC.2008.2012009.  Google Scholar

[9]

W. MichielsV. V. Assche and S. I. Niculescu, Stabilization of time-delay systems with a controlled time-varying delay and applications, IEEE Trans. Automat. Control, 50 (2005), 493-504.  doi: 10.1109/TAC.2005.844723.  Google Scholar

[10]

S. Pettersson, Synthesis of switched linear systems, Proceedings on 42nd IEEE Conference on Decision and Control, (2003), 5283-5288.  doi: 10.1109/CDC.2003.1272477.  Google Scholar

[11]

X. SunJ. Zhao and D. J. Hill, Stability and $l_2$-gain analysis for switched delay systems: A delay-dependent method, Automatica, 42 (2006), 1769-1774.  doi: 10.1016/j.automatica.2006.05.007.  Google Scholar

[12]

M. Wicks and R. Decarlo, Solution of coupled Lyapunov equations for the stabilization of multimodal linear systems, Proceedings of the American Control Conference, 1997 (1997), 1709-1713.  doi: 10.1109/ACC.1997.610876.  Google Scholar

[13]

X. Xie, H. Xu and R. Zhang, Exponential stabilization of impulsive switched systems with time delays using guaranteed cost control Abstract and Applied Analysis, 2014 (2014), Art. ID 126836, 8 pp. doi: 10.1155/2014/126836.  Google Scholar

[14]

H. XuX. Liu and K. L. Teo, Delay independent stability criteria of impulsive switched systems with time-invariant delays, Math. Comput. Model., 47 (2008), 372-379.  doi: 10.1016/j.mcm.2007.04.011.  Google Scholar

[15]

H. XuX. Liu and K. L. Teo, Robust stability analysis of guaranteed cost control for impulsive switched systems, IEEE Trans. Syst., Man, and Cyber.-Part B, 35 (2008), 1419-1422.   Google Scholar

[16]

H. Xu, X. Xie and L. Shi, An MDADT-based approach for l2-gain analysis of discrete-time switched delay systems Mathematical Problems in Engineering, 2016 (2016), Art. ID 1673959, 8 pp. doi: 10.1155/2016/1673959.  Google Scholar

[17]

H. Yan, Robust exponential stability and l2-gain for switched discrete-time nonlinear cascade systems, 33rd Chinese Control Conference, (2014), 4198-4203.   Google Scholar

[18]

G. ZhaiX. Chen and H. Lin, Stability and l2 gain analysis of discrete-time switched systems, Transactions of the Institute of Systems, Control and Information engineers, 15 (2002), 117-125.   Google Scholar

[19]

G. ZhaiB. HuK. Yasuda and A. N. Michel, Stability analysis of switched systems with stable and unstable subsystems: An average dwell time approach, American Control Conference, 1 (2000), 200-204.  doi: 10.1109/ACC.2000.878825.  Google Scholar

[20]

L. ZhangE. K. Boukas and P. Shi, Exponential H filtering for uncertain discrete-time switched linear systems with average dwell time: A μ-dependent approach', International Journal of Robust and Nonlinear Control, 18 (2008), 1188-1207.  doi: 10.1002/rnc.1276.  Google Scholar

[21]

W. Zhang and L. Yu, Stability analysis for discrete-time switched time-delay system, Automatica, 45 (2009), 2265-2271.  doi: 10.1016/j.automatica.2009.05.027.  Google Scholar

[22]

X. ZhaoL. ZhangP. Shi and M. Liu, Stability and stabilization of switched linear systems with mode-dependent average dwell time, IEEE Trans. Automat. Control, 57 (2012), 1809-1815.  doi: 10.1109/TAC.2011.2178629.  Google Scholar

Figure 1.  State trajectories of switched system under ADT switching with $\tau _a = 2$
Figure 2.  State trajectories of switched system under MDADT switching with $\tau _{a1} = 1, \tau _{a2} = 1, \tau _{a3} = 1, \tau _{a4} = 2$
Table 1.  Computation Results For The Switched Delay System (9) Under Two Different Switching Schemes
Switching SchemesADT SwitchingMDADT Switching
Criteria for controller designTheorem 1 in [19]Theorem 1 in this paper
Switching signals$\tau _a^* = 0.1175$
$\mu = 1.1$
$\lambda \le 1.5$
$\tau _{a1}^* = 0.0312$, $\tau _{a2}^* = 0.0409$,
$\tau _{a3}^* = 0.0642$, $\tau _{a4}^* = 0.1175$,
${\mu _1} = {\mu _2} = {\mu _3} = {\mu _4} = 1.1$,
${\lambda _1} \le 4.6$, ${\lambda _2} \le 3.2$,
${\lambda _3} \le 2.1$, ${\lambda _4} \le 1.5$
Switching SchemesADT SwitchingMDADT Switching
Criteria for controller designTheorem 1 in [19]Theorem 1 in this paper
Switching signals$\tau _a^* = 0.1175$
$\mu = 1.1$
$\lambda \le 1.5$
$\tau _{a1}^* = 0.0312$, $\tau _{a2}^* = 0.0409$,
$\tau _{a3}^* = 0.0642$, $\tau _{a4}^* = 0.1175$,
${\mu _1} = {\mu _2} = {\mu _3} = {\mu _4} = 1.1$,
${\lambda _1} \le 4.6$, ${\lambda _2} \le 3.2$,
${\lambda _3} \le 2.1$, ${\lambda _4} \le 1.5$
[1]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[2]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[3]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[4]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[5]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[6]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[7]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[8]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[9]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[10]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[11]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[12]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[13]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[14]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[15]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[16]

Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012

[17]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[18]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[19]

Håkon Hoel, Gaukhar Shaimerdenova, Raúl Tempone. Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators. Foundations of Data Science, 2020  doi: 10.3934/fods.2020017

[20]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (89)
  • HTML views (92)
  • Cited by (1)

Other articles
by authors

[Back to Top]