[1]
|
P. Bantay and M. Janosi, Self-organization and anomalous diffusion, Phys. A, 185 (1992), 11-18.
|
[2]
|
V. Barbu,
Nonlinear Differential Equations of Monotone Types in Banach Spaces New York, Springer, 2010.
|
[3]
|
V. Barbu, Self-organized criticality of cellular automata model; absorbtion in finite-time of supercritical region into the critical one, Math. Methods Appl. Sci., 36 (2013), 1726-1733.
doi: 10.1002/mma.2718.
|
[4]
|
C. Beauchemin, J. Samuel and J. Tuszynski, A simple cellular automaton models for influenza: A viral infections, J. Theor. Biol., 232 (2005), 223-234.
doi: 10.1016/j.jtbi.2004.08.001.
|
[5]
|
N. Boccara and K. Cheong, Critical behaviour of a probablistic automata network SIS model for the spread of an infectious disease in a population of moving individuals, J. Phys. A-Math. Gen., 26 (1993), 3707-3717.
|
[6]
|
D. Breda, O. Diekmann, W. F. de Graaf, A. Pugliese and A. R. Vermiglio, On the formulation of epidemic models (an appraisal of Kermack and McKendrick), J Biol Dyn., 6 (2012), 103-117.
doi: 10.1080/17513758.2012.716454.
|
[7]
|
H. Brezis,
Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert North Holland, 1973.
|
[8]
|
S. Busenberg, K. Cooke and M. Iannelli, Endemic thresholds and stability in a class of age-structured epidemics, SIAM J. Appl. Math., 48 (1988), 1379-1395.
doi: 10.1137/0148085.
|
[9]
|
K. Chen, P. Bak and S. P. Obukhov, Self-organized criticality in a crack-propagation model of earthquakes, Physical Review, 43 (1991), 625-630.
|
[10]
|
J. T. Cox and R. Durrett, Limit theorems for the spread of epidemics and forest fires, Stochastic Processes and their Applications, 30 (1998), 171-191.
doi: 10.1016/0304-4149(88)90083-X.
|
[11]
|
O. Diekmann and J. A. P. Heesterbeek,
Mathematical Epidemiology of Infectious Diseases Wiley, New York, 2000.
|
[12]
|
R. Eymard, Th. Gallouet and R. Herbin, Finite volume method, in Handbook of Numerial Analysis, (eds. G. Ciarlet and J. L. Lions), North Holland, 7 (2000), 713–1020.
|
[13]
|
M. A. Fuentes and M. N. Kuperman, Cellular automata and epidemiological models with spatial dependence,
Phys. A, 267 (1999), p471.
|
[14]
|
A. Gandolfi, A. Pugliese and C. Sinisgalli, Epidemic dynamics and host immune response: A nested approach, J. Math. Biol., 70 (2015), 399-435.
doi: 10.1007/s00285-014-0769-8.
|
[15]
|
P. Grassberger, On the critical Behavior of the general epidemic process and dynamical percolation, Math. Biosci., 63 (1983), 151-172.
|
[16]
|
H. W. Hethcote, The mathematics of infectious diseases, SIAM Review, 42 (2000), 599-653.
doi: 10.1137/S0036144500371907.
|
[17]
|
J. L. Lions,
Quelques Méthodes de Ré solution des Problémes aux Limites non Linéaires Dunod, Paris, 1969.
|
[18]
|
L. Lübeck and K. D. Usadel, Numerical determination of the avalanche exponents of the Bak-Tang-Wisenfeld model, Phys. Rev. E, 55 (1997), 4095-4099.
|
[19]
|
G. Marinoschi, A duality approach to nonlinear diffusion equations, Set-Valued Var. Anal., 22 (2014), 783-807.
doi: 10.1007/s11228-014-0288-1.
|
[20]
|
M. J. F. Martínez, E. G. Sánchez, J. E. G. Sánchez, A. M. Del Rey and G. R. Sánchez, A model based on cellular automata to simulate a SIS epidemic disease, J. Pure Appl. Math.: Adv. Appl., 5 (2011), 125-139.
|
[21]
|
C. J. Rhodes and R. M. Anderson, A scaling analysis of measles epidemics in a small population, Phil. Trans. R. Soc. Lond. B, 351 (1996), 1679-1688.
|
[22]
|
S. Steacy, J. McCloskey, C. J. Bean and J. Ren, Heterogeneity in a self-organised critical earthquake model, Geophysical Research Letters, 23 (1996), 383-386.
|
[23]
|
R. V. Sole, S. C. Manrubia, M. Benton and P. Bak, Self-similarity of extinction statistics in the fossil record, Nature, 388 (1997), 764-767.
|
[24]
|
Z. Xu and Y. Zhao, A reaction-diffusion model of dengue transmission, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2993-3018.
doi: 10.3934/dcdsb.2014.19.2993.
|
[25]
|
S. White, A. del Rey and G. Sánchez, Modeling epidemics using cellular automata, Appl. Math. Comput., 186 (2007), 193-202.
doi: 10.1016/j.amc.2006.06.126.
|
[26]
|
K. Wiesenfeld, C. Tang and P. Bak, A physicist's sandbox, Journal of Statistical Physics, 54 (1989), 1441-1458.
doi: 10.1007/BF01044728.
|