[1]
|
N. Bruti-Liberati and E. Platen, Strong approximations of stochastic differential equations with jumps, Journal of Computational and Applied Mathematics, 205 (2007), 982-1001.
doi: 10.1016/j.cam.2006.03.040.
|
[2]
|
R. Cont and P. Tankov,
Financial Modelling with Jump Processes, Chapman and Hall/CRC, Florida, USA, 2004.
|
[3]
|
K. Dareiotis, C. Kumar and S. Sabanis, On tamed Euler approximations of SDEs driven by lévy noise with applications to delay equations, SIAM J. Numer. Anal., 54 (2016), 1840-1872.
doi: 10.1137/151004872.
|
[4]
|
S. Dereich, Multilevel Monte Carlo algorithms for Lévy-driven SDEs with Gaussian correction, Annals of Applied Probability, 21 (2011), 283-311.
doi: 10.1214/10-AAP695.
|
[5]
|
S. Dereich and F. Heidenreich, A multilevel Monte Carlo algorithm for Lévy-driven stochastic differential equations, Stochastic Processes and their Applications, 121 (2011), 1565-1587.
doi: 10.1016/j.spa.2011.03.015.
|
[6]
|
I. Gyöngy and N. V. Krylov, On Stochastic Equations with Respect to Semi-martingales Ⅰ, Stochastics, 4 (1980), 1-21.
doi: 10.1080/03610918008833154.
|
[7]
|
D. J. Higham and P. E. Kloeden, Numerical methods for non-linear stochastic differential equations with jumps, Numerische Mathematik, 110 (2005), 101-119.
doi: 10.1007/s00211-005-0611-8.
|
[8]
|
D. J. Higham and P. E. Kloeden, Convergence and stability of implicit methods for jump-diffusion systems, International Journal of Numerical Analysis and Modelling, 3 (2006), 125-140.
|
[9]
|
M. Hutzenthaler and A. Jentzen, Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients, Memoirs of the American Mathematical Society, 236 (2015), ⅴ+99 pp.
|
[10]
|
M. Hutzenthaler and A. Jentzen, On a perturbation theory and on strong convergence rates for stochastic ordinary and partial differential equations with non-globally monotone coefficients, 2014, arXiv: 1401.0295.
|
[11]
|
M. Hutzethaler, A. Jentzen and P. E. Kloeden, Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients, Proceedings of the Royal Society A, 467 (2010), 1563-1576.
doi: 10.1098/rspa.2010.0348.
|
[12]
|
M. Hutzenthaler, A. Jentzen and P. E. Kloeden, Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients, The Annals of Applied Probability, 22 (2012), 1611-1641.
doi: 10.1214/11-AAP803.
|
[13]
|
J. Jacod, T. G. Kurtz, S. Méléard and P. Protter, The approximate Euler method for Lévy driven stochastic differential equations, Ann. I. H. Poincaré-PR, 41 (2005), 523-558.
doi: 10.1016/j.anihpb.2004.01.007.
|
[14]
|
P. E. Kloeden and E. Platen,
Numerical Solution of Stochastic Differential Equations, Applications of Mathematics, Springer, Berlin, 1992.
|
[15]
|
R. Mikulevicius and H. Pragarauskas, On $\mathcal{L}_p$-estimates of some singular integrals related to jump processes, SIAM J. Math. Anal., 44 (2012), 2305-2328.
doi: 10.1137/110844854.
|
[16]
|
B. Øksendal and A. Sulem, Applied Stochastic Control of Jump Diffusions, 2nd edition, Springer, Berlin, 2007.
|
[17]
|
E. Platen and N. Bruti-Liberati,
Numerical Solution of Stochastic Differential Equations with Jumps in Finance, Springer-Verlag, Berlin, 2010.
|
[18]
|
D. Revuz and M. Yor,
Continuous martingales and Brownian motion, 3rd edition, Springer-Verlag, Berlin, 1999.
|
[19]
|
S. Sabanis, A note on tamed Euler approximations, Electronic Communications in Probability, 18 (2013), 1-10.
doi: 10.1214/ECP.v18-2824.
|
[20]
|
S. Sabanis, Euler approximations with varying coefficients: The case of superlinearly growing diffusion coefficients, Ann. Appl. Probab., 26 (2016), 2083-2105.
doi: 10.1214/15-AAP1140.
|
[21]
|
R. Situ, Theory of Stochastic Differential Equations with Jumps and Applications, Mathematical and Analytical Techniques with Applications to Engineering, Springer, New York, 2005.
|
[22]
|
M. V. Tretyakov and Z. Zhang, A fundamental mean-square convergence theorem for SDEs with locally Lipschitz coefficients and its applications, SIAM Journal of Numerical Analysis, 51 (2013), 3135-3162.
doi: 10.1137/120902318.
|
[23]
|
X. Wang and S. Gan, The tamed Milstein method for commutative stochastic differential equations with non-globally Lipschitz continuous coefficients, Journal of Difference Equations and Applications, 19 (2013), 466-490.
doi: 10.1080/10236198.2012.656617.
|
[24]
|
Z. Zhang, New explicit balanced schemes for SDEs with locally Lipschitz coefficients, 2014, arXiv: 1402.3708.
|