March  2017, 22(2): 421-463. doi: 10.3934/dcdsb.2017020

On tamed milstein schemes of SDEs driven by Lévy noise

1. 

Department of Mathematics, Indian Institute of Technology, Roorkee, India

2. 

School of Mathematics, University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom

* Corresponding author: Sotirios Sabanis

Received  June 2015 Revised  December 2015 Published  December 2016

Fund Project: This work was done when the first author was a PhD student in the School of Mathematics, University of Edinburgh, United Kingdom

We extend the taming techniques developed in [3,19] to construct explicit Milstein schemes that numerically approximate Lévy driven stochastic differential equations with super-linearly growing drift coefficients. The classical rate of convergence is recovered when the first derivative of the drift coefficient satisfies a polynomial Lipschitz condition.

Citation: Chaman Kumar, Sotirios Sabanis. On tamed milstein schemes of SDEs driven by Lévy noise. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 421-463. doi: 10.3934/dcdsb.2017020
References:
[1]

N. Bruti-Liberati and E. Platen, Strong approximations of stochastic differential equations with jumps, Journal of Computational and Applied Mathematics, 205 (2007), 982-1001. doi: 10.1016/j.cam.2006.03.040. Google Scholar

[2]

R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman and Hall/CRC, Florida, USA, 2004.Google Scholar

[3]

K. DareiotisC. Kumar and S. Sabanis, On tamed Euler approximations of SDEs driven by lévy noise with applications to delay equations, SIAM J. Numer. Anal., 54 (2016), 1840-1872. doi: 10.1137/151004872. Google Scholar

[4]

S. Dereich, Multilevel Monte Carlo algorithms for Lévy-driven SDEs with Gaussian correction, Annals of Applied Probability, 21 (2011), 283-311. doi: 10.1214/10-AAP695. Google Scholar

[5]

S. Dereich and F. Heidenreich, A multilevel Monte Carlo algorithm for Lévy-driven stochastic differential equations, Stochastic Processes and their Applications, 121 (2011), 1565-1587. doi: 10.1016/j.spa.2011.03.015. Google Scholar

[6]

I. Gyöngy and N. V. Krylov, On Stochastic Equations with Respect to Semi-martingales Ⅰ, Stochastics, 4 (1980), 1-21. doi: 10.1080/03610918008833154. Google Scholar

[7]

D. J. Higham and P. E. Kloeden, Numerical methods for non-linear stochastic differential equations with jumps, Numerische Mathematik, 110 (2005), 101-119. doi: 10.1007/s00211-005-0611-8. Google Scholar

[8]

D. J. Higham and P. E. Kloeden, Convergence and stability of implicit methods for jump-diffusion systems, International Journal of Numerical Analysis and Modelling, 3 (2006), 125-140. Google Scholar

[9]

M. Hutzenthaler and A. Jentzen, Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients, Memoirs of the American Mathematical Society, 236 (2015), ⅴ+99 pp.Google Scholar

[10]

M. Hutzenthaler and A. Jentzen, On a perturbation theory and on strong convergence rates for stochastic ordinary and partial differential equations with non-globally monotone coefficients, 2014, arXiv: 1401.0295.Google Scholar

[11]

M. HutzethalerA. Jentzen and P. E. Kloeden, Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients, Proceedings of the Royal Society A, 467 (2010), 1563-1576. doi: 10.1098/rspa.2010.0348. Google Scholar

[12]

M. HutzenthalerA. Jentzen and P. E. Kloeden, Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients, The Annals of Applied Probability, 22 (2012), 1611-1641. doi: 10.1214/11-AAP803. Google Scholar

[13]

J. JacodT. G. KurtzS. Méléard and P. Protter, The approximate Euler method for Lévy driven stochastic differential equations, Ann. I. H. Poincaré-PR, 41 (2005), 523-558. doi: 10.1016/j.anihpb.2004.01.007. Google Scholar

[14]

P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Applications of Mathematics, Springer, Berlin, 1992.Google Scholar

[15]

R. Mikulevicius and H. Pragarauskas, On $\mathcal{L}_p$-estimates of some singular integrals related to jump processes, SIAM J. Math. Anal., 44 (2012), 2305-2328. doi: 10.1137/110844854. Google Scholar

[16]

B. Øksendal and A. Sulem, Applied Stochastic Control of Jump Diffusions, 2nd edition, Springer, Berlin, 2007.Google Scholar

[17]

E. Platen and N. Bruti-Liberati, Numerical Solution of Stochastic Differential Equations with Jumps in Finance, Springer-Verlag, Berlin, 2010.Google Scholar

[18]

D. Revuz and M. Yor, Continuous martingales and Brownian motion, 3rd edition, Springer-Verlag, Berlin, 1999.Google Scholar

[19]

S. Sabanis, A note on tamed Euler approximations, Electronic Communications in Probability, 18 (2013), 1-10. doi: 10.1214/ECP.v18-2824. Google Scholar

[20]

S. Sabanis, Euler approximations with varying coefficients: The case of superlinearly growing diffusion coefficients, Ann. Appl. Probab., 26 (2016), 2083-2105. doi: 10.1214/15-AAP1140. Google Scholar

[21]

R. Situ, Theory of Stochastic Differential Equations with Jumps and Applications, Mathematical and Analytical Techniques with Applications to Engineering, Springer, New York, 2005.Google Scholar

[22]

M. V. Tretyakov and Z. Zhang, A fundamental mean-square convergence theorem for SDEs with locally Lipschitz coefficients and its applications, SIAM Journal of Numerical Analysis, 51 (2013), 3135-3162. doi: 10.1137/120902318. Google Scholar

[23]

X. Wang and S. Gan, The tamed Milstein method for commutative stochastic differential equations with non-globally Lipschitz continuous coefficients, Journal of Difference Equations and Applications, 19 (2013), 466-490. doi: 10.1080/10236198.2012.656617. Google Scholar

[24]

Z. Zhang, New explicit balanced schemes for SDEs with locally Lipschitz coefficients, 2014, arXiv: 1402.3708.Google Scholar

show all references

References:
[1]

N. Bruti-Liberati and E. Platen, Strong approximations of stochastic differential equations with jumps, Journal of Computational and Applied Mathematics, 205 (2007), 982-1001. doi: 10.1016/j.cam.2006.03.040. Google Scholar

[2]

R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman and Hall/CRC, Florida, USA, 2004.Google Scholar

[3]

K. DareiotisC. Kumar and S. Sabanis, On tamed Euler approximations of SDEs driven by lévy noise with applications to delay equations, SIAM J. Numer. Anal., 54 (2016), 1840-1872. doi: 10.1137/151004872. Google Scholar

[4]

S. Dereich, Multilevel Monte Carlo algorithms for Lévy-driven SDEs with Gaussian correction, Annals of Applied Probability, 21 (2011), 283-311. doi: 10.1214/10-AAP695. Google Scholar

[5]

S. Dereich and F. Heidenreich, A multilevel Monte Carlo algorithm for Lévy-driven stochastic differential equations, Stochastic Processes and their Applications, 121 (2011), 1565-1587. doi: 10.1016/j.spa.2011.03.015. Google Scholar

[6]

I. Gyöngy and N. V. Krylov, On Stochastic Equations with Respect to Semi-martingales Ⅰ, Stochastics, 4 (1980), 1-21. doi: 10.1080/03610918008833154. Google Scholar

[7]

D. J. Higham and P. E. Kloeden, Numerical methods for non-linear stochastic differential equations with jumps, Numerische Mathematik, 110 (2005), 101-119. doi: 10.1007/s00211-005-0611-8. Google Scholar

[8]

D. J. Higham and P. E. Kloeden, Convergence and stability of implicit methods for jump-diffusion systems, International Journal of Numerical Analysis and Modelling, 3 (2006), 125-140. Google Scholar

[9]

M. Hutzenthaler and A. Jentzen, Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients, Memoirs of the American Mathematical Society, 236 (2015), ⅴ+99 pp.Google Scholar

[10]

M. Hutzenthaler and A. Jentzen, On a perturbation theory and on strong convergence rates for stochastic ordinary and partial differential equations with non-globally monotone coefficients, 2014, arXiv: 1401.0295.Google Scholar

[11]

M. HutzethalerA. Jentzen and P. E. Kloeden, Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients, Proceedings of the Royal Society A, 467 (2010), 1563-1576. doi: 10.1098/rspa.2010.0348. Google Scholar

[12]

M. HutzenthalerA. Jentzen and P. E. Kloeden, Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients, The Annals of Applied Probability, 22 (2012), 1611-1641. doi: 10.1214/11-AAP803. Google Scholar

[13]

J. JacodT. G. KurtzS. Méléard and P. Protter, The approximate Euler method for Lévy driven stochastic differential equations, Ann. I. H. Poincaré-PR, 41 (2005), 523-558. doi: 10.1016/j.anihpb.2004.01.007. Google Scholar

[14]

P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Applications of Mathematics, Springer, Berlin, 1992.Google Scholar

[15]

R. Mikulevicius and H. Pragarauskas, On $\mathcal{L}_p$-estimates of some singular integrals related to jump processes, SIAM J. Math. Anal., 44 (2012), 2305-2328. doi: 10.1137/110844854. Google Scholar

[16]

B. Øksendal and A. Sulem, Applied Stochastic Control of Jump Diffusions, 2nd edition, Springer, Berlin, 2007.Google Scholar

[17]

E. Platen and N. Bruti-Liberati, Numerical Solution of Stochastic Differential Equations with Jumps in Finance, Springer-Verlag, Berlin, 2010.Google Scholar

[18]

D. Revuz and M. Yor, Continuous martingales and Brownian motion, 3rd edition, Springer-Verlag, Berlin, 1999.Google Scholar

[19]

S. Sabanis, A note on tamed Euler approximations, Electronic Communications in Probability, 18 (2013), 1-10. doi: 10.1214/ECP.v18-2824. Google Scholar

[20]

S. Sabanis, Euler approximations with varying coefficients: The case of superlinearly growing diffusion coefficients, Ann. Appl. Probab., 26 (2016), 2083-2105. doi: 10.1214/15-AAP1140. Google Scholar

[21]

R. Situ, Theory of Stochastic Differential Equations with Jumps and Applications, Mathematical and Analytical Techniques with Applications to Engineering, Springer, New York, 2005.Google Scholar

[22]

M. V. Tretyakov and Z. Zhang, A fundamental mean-square convergence theorem for SDEs with locally Lipschitz coefficients and its applications, SIAM Journal of Numerical Analysis, 51 (2013), 3135-3162. doi: 10.1137/120902318. Google Scholar

[23]

X. Wang and S. Gan, The tamed Milstein method for commutative stochastic differential equations with non-globally Lipschitz continuous coefficients, Journal of Difference Equations and Applications, 19 (2013), 466-490. doi: 10.1080/10236198.2012.656617. Google Scholar

[24]

Z. Zhang, New explicit balanced schemes for SDEs with locally Lipschitz coefficients, 2014, arXiv: 1402.3708.Google Scholar

Figure 1.  $\mathcal{L}^q$-convergence rate of tamed Milstein scheme (60) of SDE (59)
Figure 2.  $\mathcal{L}^2$-convergence rate of tamed Milstein scheme (62) of SDE (61)
Table 1.  Tamed Milstein scheme (60) of SDE (59)
$h=2^{-n}$$E|x_T-x_T^h|$$\sqrt{E|x_T-x_T^h|^2}$$\sqrt[3]{E|x_T-x_T^h|^3}$$\sqrt[4]{E|x_T-x_T^h|^4}$$\sqrt[5]{E|x_T-x_T^h|^5}$
$2^{-20}$0.00000072230.00000273960.00000713380.00001338720.0000206505
$2^{-19}$0.00000204880.00000815460.00002130110.00004003560.0000618759
$2^{-18}$0.00000468290.00001903720.00004986700.00009374730.0001448460
$2^{-17}$0.00000995260.00004083590.00010722620.00020220940.0003133946
$2^{-16}$0.00002055890.00008446300.00022276010.00042182320.0006555927
$2^{-15}$0.00004173940.00017238330.00045540100.00086421630.0013460486
$2^{-14}$0.00008439480.00035194740.00093605180.00178705370.0027962853
$2^{-13}$0.00017100520.00072322000.00196493840.00382597550.0060684654
$2^{-12}$0.00034797890.00152930720.00437966570.00890314840.0144907359
$2^{-11}$0.00072311890.00358025810.01187747640.02596492920.0432914310
$h=2^{-n}$$E|x_T-x_T^h|$$\sqrt{E|x_T-x_T^h|^2}$$\sqrt[3]{E|x_T-x_T^h|^3}$$\sqrt[4]{E|x_T-x_T^h|^4}$$\sqrt[5]{E|x_T-x_T^h|^5}$
$2^{-20}$0.00000072230.00000273960.00000713380.00001338720.0000206505
$2^{-19}$0.00000204880.00000815460.00002130110.00004003560.0000618759
$2^{-18}$0.00000468290.00001903720.00004986700.00009374730.0001448460
$2^{-17}$0.00000995260.00004083590.00010722620.00020220940.0003133946
$2^{-16}$0.00002055890.00008446300.00022276010.00042182320.0006555927
$2^{-15}$0.00004173940.00017238330.00045540100.00086421630.0013460486
$2^{-14}$0.00008439480.00035194740.00093605180.00178705370.0027962853
$2^{-13}$0.00017100520.00072322000.00196493840.00382597550.0060684654
$2^{-12}$0.00034797890.00152930720.00437966570.00890314840.0144907359
$2^{-11}$0.00072311890.00358025810.01187747640.02596492920.0432914310
Table 2.  Tamed Milstein scheme (62) of SDE (61)
$h=2^{-n}$$\sqrt{E|x_T-x_T^h|^2}$
$\lambda=3.0$$\lambda=5.0$
$2^{-20}$0.000674840.00621555
$2^{-19}$0.002048890.02203719
$2^{-18}$0.005158740.06003098
$2^{-17}$0.013210110.27830910
$2^{-16}$0.031468600.45542612
$2^{-15}$0.063490050.66561201
$2^{-14}$0.164593650.85082102
$2^{-13}$0.274267571.55620505
$2^{-12}$0.404371332.07850380
$2^{-11}$0.572510832.41922833
(A) Mark is normal with mean $0$ and variance $0.125$.
$h=2^{-n}$$\sqrt{E|x_T-x_T^h|^2}$
$\lambda=3.0$$\lambda=5.0$
$2^{-20}$0.000043650.00005260
$2^{-19}$0.000112860.00013058
$2^{-18}$0.000251330.00028420
$2^{-17}$0.000541340.00059787
$2^{-16}$0.001126430.00125615
$2^{-15}$0.002421780.00272857
$2^{-14}$0.005631260.00673629
$2^{-13}$0.014971660.01747566
$2^{-12}$0.037457490.03448135
$2^{-11}$0.073027340.07900926
(B) Mark is uniform on $[-1/4,1/4]$.
$h=2^{-n}$$\sqrt{E|x_T-x_T^h|^2}$
$\lambda=3.0$$\lambda=5.0$
$2^{-20}$0.000674840.00621555
$2^{-19}$0.002048890.02203719
$2^{-18}$0.005158740.06003098
$2^{-17}$0.013210110.27830910
$2^{-16}$0.031468600.45542612
$2^{-15}$0.063490050.66561201
$2^{-14}$0.164593650.85082102
$2^{-13}$0.274267571.55620505
$2^{-12}$0.404371332.07850380
$2^{-11}$0.572510832.41922833
(A) Mark is normal with mean $0$ and variance $0.125$.
$h=2^{-n}$$\sqrt{E|x_T-x_T^h|^2}$
$\lambda=3.0$$\lambda=5.0$
$2^{-20}$0.000043650.00005260
$2^{-19}$0.000112860.00013058
$2^{-18}$0.000251330.00028420
$2^{-17}$0.000541340.00059787
$2^{-16}$0.001126430.00125615
$2^{-15}$0.002421780.00272857
$2^{-14}$0.005631260.00673629
$2^{-13}$0.014971660.01747566
$2^{-12}$0.037457490.03448135
$2^{-11}$0.073027340.07900926
(B) Mark is uniform on $[-1/4,1/4]$.
[1]

Ziheng Chen, Siqing Gan, Xiaojie Wang. Mean-square approximations of Lévy noise driven SDEs with super-linearly growing diffusion and jump coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4513-4545. doi: 10.3934/dcdsb.2019154

[2]

Martin Redmann, Melina A. Freitag. Balanced model order reduction for linear random dynamical systems driven by Lévy noise. Journal of Computational Dynamics, 2018, 5 (1&2) : 33-59. doi: 10.3934/jcd.2018002

[3]

Linghua Chen, Espen R. Jakobsen. L1 semigroup generation for Fokker-Planck operators associated to general Lévy driven SDEs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5735-5763. doi: 10.3934/dcds.2018250

[4]

E. N. Dancer. On domain perturbation for super-linear Neumann problems and a question of Y. Lou, W-M Ni and L. Su. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3861-3869. doi: 10.3934/dcds.2012.32.3861

[5]

Markus Riedle, Jianliang Zhai. Large deviations for stochastic heat equations with memory driven by Lévy-type noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1983-2005. doi: 10.3934/dcds.2018080

[6]

Kumarasamy Sakthivel, Sivaguru S. Sritharan. Martingale solutions for stochastic Navier-Stokes equations driven by Lévy noise. Evolution Equations & Control Theory, 2012, 1 (2) : 355-392. doi: 10.3934/eect.2012.1.355

[7]

Xueqin Li, Chao Tang, Tianmin Huang. Poisson $S^2$-almost automorphy for stochastic processes and its applications to SPDEs driven by Lévy noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3309-3345. doi: 10.3934/dcdsb.2018282

[8]

Desmond J. Higham, Xuerong Mao, Lukasz Szpruch. Convergence, non-negativity and stability of a new Milstein scheme with applications to finance. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2083-2100. doi: 10.3934/dcdsb.2013.18.2083

[9]

Badr-eddine Berrhazi, Mohamed El Fatini, Tomás Caraballo, Roger Pettersson. A stochastic SIRI epidemic model with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2415-2431. doi: 10.3934/dcdsb.2018057

[10]

Hongjun Gao, Fei Liang. On the stochastic beam equation driven by a Non-Gaussian Lévy process. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1027-1045. doi: 10.3934/dcdsb.2014.19.1027

[11]

Rachel Chen, Jianqiang Hu, Yijie Peng. Simulation of Lévy-Driven models and its application in finance. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 749-765. doi: 10.3934/naco.2012.2.749

[12]

Shahad Al-azzawi, Jicheng Liu, Xianming Liu. Convergence rate of synchronization of systems with additive noise. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 227-245. doi: 10.3934/dcdsb.2017012

[13]

Xiangjun Wang, Jianghui Wen, Jianping Li, Jinqiao Duan. Impact of $\alpha$-stable Lévy noise on the Stommel model for the thermohaline circulation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1575-1584. doi: 10.3934/dcdsb.2012.17.1575

[14]

Kexue Li, Jigen Peng, Junxiong Jia. Explosive solutions of parabolic stochastic partial differential equations with lévy noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5105-5125. doi: 10.3934/dcds.2017221

[15]

Adam Andersson, Felix Lindner. Malliavin regularity and weak approximation of semilinear SPDEs with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4271-4294. doi: 10.3934/dcdsb.2019081

[16]

Justin Cyr, Phuong Nguyen, Roger Temam. Stochastic one layer shallow water equations with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3765-3818. doi: 10.3934/dcdsb.2018331

[17]

Jun Shen, Kening Lu, Bixiang Wang. Convergence and center manifolds for differential equations driven by colored noise. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4797-4840. doi: 10.3934/dcds.2019196

[18]

Xinfu Chen, Bei Hu, Jin Liang, Yajing Zhang. Convergence rate of free boundary of numerical scheme for American option. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1435-1444. doi: 10.3934/dcdsb.2016004

[19]

Yves Bourgault, Damien Broizat, Pierre-Emmanuel Jabin. Convergence rate for the method of moments with linear closure relations. Kinetic & Related Models, 2015, 8 (1) : 1-27. doi: 10.3934/krm.2015.8.1

[20]

Yang Yang, Kam C. Yuen, Jun-Feng Liu. Asymptotics for ruin probabilities in Lévy-driven risk models with heavy-tailed claims. Journal of Industrial & Management Optimization, 2018, 14 (1) : 231-247. doi: 10.3934/jimo.2017044

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (18)
  • HTML views (85)
  • Cited by (0)

Other articles
by authors

[Back to Top]