• Previous Article
    Energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks
  • DCDS-B Home
  • This Issue
  • Next Article
    Periodic solutions of some classes of continuous second-order differential equations
March  2017, 22(2): 483-490. doi: 10.3934/dcdsb.2017023

Expanding speed of the habitat for a species in an advective environment

1. 

School of Mathematical Sciences, Tongji University, Shanghai 200092, China

2. 

School of Applied Mathematics, Nanjing University of Finance & Economics, Nanjing 210023, China

3. 

Mathematics & Science College, Shanghai Normal University, Shanghai 200234, China

* Corresponding author

Received  March 2016 Revised  June 2016 Published  December 2016

Fund Project: This research was partly supported by NSFC (No. 11671262,11601225)

Recently, Gu et al. [7,8] studied a reaction-diffusion-advection equation $u_t =u_{xx} -β u_x + f(u)$ in $(g(t), h(t))$, where $g(t)$ and $h(t)$ are two free boundaries satisfying Stefan conditions, $f(u)$ is a Fisher-KPP type of nonlinearity. When $β ∈ [0,c_0)$, where $c_0 := 2\sqrt{f'(0)}$, they found that for a spreading solution $(u,g,h)$, $h(t)/t \to c^*_r (β)$ and $g(t)/t \to c^*_l (β)$ as $t \to ∞$, and $c^*_r (β) > c^*_r(0) = - c^*_l (0) > - c^*_l (β) >0$. In this paper we study the expanding speed $C^*(β) :=c^*_r(β) - c^*_l (β)$ of the habitat $(g(t), h(t))$, and show that $C^*(β)$ is strictly increasing in $β ∈ [0,c_0)$. When $β ∈ [c_0, β^*)$ for some $β^*>c_0$, [8] also found a virtual spreading phenomena: $h(t)/t \to c^*_r(β)$ as $t\to∞$, and a back forms in the solution which moves rightward with a speed $β - c_0$. Hence the expanding speed of the main habitat for such a solution is $C^*(β) := c^*_r(β) -[β -c_0]$. In this paper we show that $C^*(β)$ is strictly decreasing in $β∈ [c_0, β^*)$ with $C^*(β^* -0)=0$, and so there exists a unique $β_0∈ (c_0, β^*)$ such that the advection is favorable to the expanding speed of the habitat if and only if $β∈ (0,β_0)$.

Citation: Junfan Lu, Hong Gu, Bendong Lou. Expanding speed of the habitat for a species in an advective environment. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 483-490. doi: 10.3934/dcdsb.2017023
References:
[1]

I. E. Averill, The Effect of Intermediate Advection on Two Competing Species Doctor of Philosophy, Ohio State University, Mathematics, 2012. Google Scholar

[2]

Y. Du and Z. G. Lin, Spreading-vanishing dichtomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 45 (2013), 1995-1996.  doi: 10.1137/090771089.  Google Scholar

[3]

Y. Du and B. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc., 17 (2015), 2673-2724.  doi: 10.4171/JEMS/568.  Google Scholar

[4]

Y. DuH. Matsuzawa and M. Zhou, Sharp estimate of the spreading speed determined by nonlinear free boundary problems, SIAM J. Math. Anal., 46 (2014), 375-396.  doi: 10.1137/130908063.  Google Scholar

[5]

J. GeK. I. KimZ. G. Lin and H. Zhu, A SIS reaction-diffusion-advection model in a low-risk and high-risk domain, J. Differential Equations, 259 (2015), 5486-5509.  doi: 10.1016/j.jde.2015.06.035.  Google Scholar

[6]

H. GuZ. Lin and B. Lou, Long time behavior of solutions of a diffusion-advection logistic model with free boundaries, Appl. Math. Lett., 37 (2014), 49-53.  doi: 10.1016/j.aml.2014.05.015.  Google Scholar

[7]

H. GuZ. Lin and B. Lou, Different asymptotic spreading speeds induced by advection in a diffusion problem with free boundaries, Proc. Amer. Math. Soc., 143 (2015), 1109-1117.  doi: 10.1090/S0002-9939-2014-12214-3.  Google Scholar

[8]

H. GuB. Lou and M. Zhou, Long time behavior of solutions of Fisher-KPP equation with advection and free boundaries, J. Funct. Anal., 269 (2015), 1714-1768.  doi: 10.1016/j.jfa.2015.07.002.  Google Scholar

[9]

N. A. Maidana and H. Yang, Spatial spreading of West Nile virus described by traveling waves, J. Theoret. Biol., 258 (2009), 403-417.  doi: 10.1016/j.jtbi.2008.12.032.  Google Scholar

[10]

Y. Zhao and M. Wang, A reaction-diffusion-advection equation with mixed and free boundary conditions, preprint, arXiv: 1312.7751. Google Scholar

show all references

References:
[1]

I. E. Averill, The Effect of Intermediate Advection on Two Competing Species Doctor of Philosophy, Ohio State University, Mathematics, 2012. Google Scholar

[2]

Y. Du and Z. G. Lin, Spreading-vanishing dichtomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 45 (2013), 1995-1996.  doi: 10.1137/090771089.  Google Scholar

[3]

Y. Du and B. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc., 17 (2015), 2673-2724.  doi: 10.4171/JEMS/568.  Google Scholar

[4]

Y. DuH. Matsuzawa and M. Zhou, Sharp estimate of the spreading speed determined by nonlinear free boundary problems, SIAM J. Math. Anal., 46 (2014), 375-396.  doi: 10.1137/130908063.  Google Scholar

[5]

J. GeK. I. KimZ. G. Lin and H. Zhu, A SIS reaction-diffusion-advection model in a low-risk and high-risk domain, J. Differential Equations, 259 (2015), 5486-5509.  doi: 10.1016/j.jde.2015.06.035.  Google Scholar

[6]

H. GuZ. Lin and B. Lou, Long time behavior of solutions of a diffusion-advection logistic model with free boundaries, Appl. Math. Lett., 37 (2014), 49-53.  doi: 10.1016/j.aml.2014.05.015.  Google Scholar

[7]

H. GuZ. Lin and B. Lou, Different asymptotic spreading speeds induced by advection in a diffusion problem with free boundaries, Proc. Amer. Math. Soc., 143 (2015), 1109-1117.  doi: 10.1090/S0002-9939-2014-12214-3.  Google Scholar

[8]

H. GuB. Lou and M. Zhou, Long time behavior of solutions of Fisher-KPP equation with advection and free boundaries, J. Funct. Anal., 269 (2015), 1714-1768.  doi: 10.1016/j.jfa.2015.07.002.  Google Scholar

[9]

N. A. Maidana and H. Yang, Spatial spreading of West Nile virus described by traveling waves, J. Theoret. Biol., 258 (2009), 403-417.  doi: 10.1016/j.jtbi.2008.12.032.  Google Scholar

[10]

Y. Zhao and M. Wang, A reaction-diffusion-advection equation with mixed and free boundary conditions, preprint, arXiv: 1312.7751. Google Scholar

Figure 1.  Graph of $C^*(\beta)$: a simulation result when $f(u)=u(1-u)$ and $\mu=1$
Figure 2.  Graphs of $c_r^*(\beta) $ and $-c_l^*(\beta)$ when $f(u)=u(1-u)$ and $\mu=1$
[1]

Bo Duan, Zhengce Zhang. A two-species weak competition system of reaction-diffusion-advection with double free boundaries. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 801-829. doi: 10.3934/dcdsb.2018208

[2]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116

[3]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure & Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017

[4]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020033

[5]

Chris Cosner. Reaction-diffusion-advection models for the effects and evolution of dispersal. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1701-1745. doi: 10.3934/dcds.2014.34.1701

[6]

Xinfu Chen, King-Yeung Lam, Yuan Lou. Corrigendum: Dynamics of a reaction-diffusion-advection model for two competing species. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4989-4995. doi: 10.3934/dcds.2014.34.4989

[7]

Xinfu Chen, King-Yeung Lam, Yuan Lou. Dynamics of a reaction-diffusion-advection model for two competing species. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3841-3859. doi: 10.3934/dcds.2012.32.3841

[8]

Mostafa Bendahmane, Kenneth H. Karlsen. Renormalized solutions of an anisotropic reaction-diffusion-advection system with $L^1$ data. Communications on Pure & Applied Analysis, 2006, 5 (4) : 733-762. doi: 10.3934/cpaa.2006.5.733

[9]

Linfeng Mei, Xiaoyan Zhang. On a nonlocal reaction-diffusion-advection system modeling phytoplankton growth with light and nutrients. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 221-243. doi: 10.3934/dcdsb.2012.17.221

[10]

Danhua Jiang, Zhi-Cheng Wang, Liang Zhang. A reaction-diffusion-advection SIS epidemic model in a spatially-temporally heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4557-4578. doi: 10.3934/dcdsb.2018176

[11]

Jia-Feng Cao, Wan-Tong Li, Meng Zhao. On a free boundary problem for a nonlocal reaction-diffusion model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4117-4139. doi: 10.3934/dcdsb.2018128

[12]

Qing Tang. On an optimal control problem of time-fractional advection-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 761-779. doi: 10.3934/dcdsb.2019266

[13]

Haomin Huang, Mingxin Wang. The reaction-diffusion system for an SIR epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2039-2050. doi: 10.3934/dcdsb.2015.20.2039

[14]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[15]

Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003

[16]

Gary Bunting, Yihong Du, Krzysztof Krakowski. Spreading speed revisited: Analysis of a free boundary model. Networks & Heterogeneous Media, 2012, 7 (4) : 583-603. doi: 10.3934/nhm.2012.7.583

[17]

Gregoire Nadin. How does the spreading speed associated with the Fisher-KPP equation depend on random stationary diffusion and reaction terms?. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1785-1803. doi: 10.3934/dcdsb.2015.20.1785

[18]

Hiroshi Matsuzawa. A free boundary problem for the Fisher-KPP equation with a given moving boundary. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1821-1852. doi: 10.3934/cpaa.2018087

[19]

Jan Haškovec, Dietmar Oelz. A free boundary problem for aggregation by short range sensing and differentiated diffusion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1461-1480. doi: 10.3934/dcdsb.2015.20.1461

[20]

Hong-Ming Yin. A free boundary problem arising from a stress-driven diffusion in polymers. Discrete & Continuous Dynamical Systems - A, 1996, 2 (2) : 191-202. doi: 10.3934/dcds.1996.2.191

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (35)
  • HTML views (78)
  • Cited by (0)

Other articles
by authors

[Back to Top]