March  2017, 22(2): 537-567. doi: 10.3934/dcdsb.2017026

Global classical solutions to the free boundary problem of planar full magnetohydrodynamic equations with large initial data

Department of Mathematics, School of Information, Renmin University of China, Beijing 100872, China

* Corresponding author

Received  March 2016 Revised  June 2016 Published  December 2016

The free boundary problem of planar full compressible magnetohydrodynamic equations with large initial data is studied in this paper, when the initial density connects to vacuum smoothly. The global existence and uniqueness of classical solutions are established, and the expanding rate of the free interface is shown. Using the method of Lagrangian particle path, we derive some L estimates and weighted energy estimates, which lead to the global existence of classical solutions. The main difficulty of this problem is the degeneracy of the system near the free boundary, while previous results (cf. [4,30]) require that the density is bounded from below by a positive constant.

Citation: Yaobin Ou, Pan Shi. Global classical solutions to the free boundary problem of planar full magnetohydrodynamic equations with large initial data. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 537-567. doi: 10.3934/dcdsb.2017026
References:
[1]

E. Becker, Gasdynamik, Teubner, Stuttgart, 1966. Google Scholar

[2]

D. Bian, B. Guo and J. Zhang, Global strong spherically symmetric solutions to the full compressible Navier-Stokes equations with stress free boundary J. Math. Phys. , 56 (2015), 023509, 23 pp. Google Scholar

[3]

G.-Q. Chen and M. Kratka, Global solutions to the Navier-Stokes equations for compressible heat conducting flow with symmetry and free boundary, Comm. Partial Diff. Eqs., 27 (2002), 907-943.  doi: 10.1081/PDE-120004889.  Google Scholar

[4]

G.-Q. Chen and D. Wang, Global solutions of nonlinear magnetohydrodynamics with large initial data, J. Diff. Eqs., 182 (2002), 344-376.  doi: 10.1006/jdeq.2001.4111.  Google Scholar

[5]

D. Coutand and S. Shkoller, Well-posedness in smooth function spaces for the moving-boundary 1-D compressible Euler equations in physical vacuum, Commun. Pure Appl. Math., 64 (2011), 328-366.  doi: 10.1002/cpa.20344.  Google Scholar

[6]

D. Coutand and S. Shkoller, Well-posedness in smooth function spaces for the moving-boundary three-dimensional compressible Euler equations in physical vacuum, Arch. Ration. Mech. Anal., 206 (2012), 515-616.  doi: 10.1007/s00205-012-0536-1.  Google Scholar

[7]

Q. Duan, On the dynamics of Navier-Stokes equations for a shallow water model, J. Differential Equations, 250 (2011), 2687-2714.  doi: 10.1016/j.jde.2011.01.010.  Google Scholar

[8]

D. Fang and T. Zhang, Global behavior of compressible Navier-Stokes equations with a degenerate viscosity coefficient, Arch. Rational Mech. Anal., 182 (2006), 223-253.  doi: 10.1007/s00205-006-0425-6.  Google Scholar

[9]

D. Fang and T. Zhang, Global behavior of spherically symmetric Navier-Stokes-Poisson system with degenerate viscosity coefficients, Arch. Rational Mech. Anal., 191 (2009), 195-243.  doi: 10.1007/s00205-008-0183-8.  Google Scholar

[10] E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford University Press, Oxford, 2004.   Google Scholar
[11]

Z. GuoH. Li and Z. Xin, Lagrange structure and dynamics for solutions to the spherically symmetric compressible Navier-Stokes equations, Comm. Math. Phys., 309 (2012), 371-412.  doi: 10.1007/s00220-011-1334-6.  Google Scholar

[12]

Z. Guo and Z. Li, Global existence of weak solution to the free boundary problem for compressible Navier-Stokes, Kinet. Relat. Models, 9 (2016), 75-103.  doi: 10.3934/krm.2016.9.75.  Google Scholar

[13]

Z. Guo and C. Zhu, Global weak solutions and asymptotic behavior to 1D compressible Navier-Stokes equations with density-dependent viscosity and vacuum, J. Differential Equations, 248 (2010), 2768-2799.  doi: 10.1016/j.jde.2010.03.005.  Google Scholar

[14]

C. Hao, Remarks on the free boundary problem of compressible Euler equations in physical vacuum with general initial densities, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2885-2931.  doi: 10.3934/dcdsb.2015.20.2885.  Google Scholar

[15]

Y. Hu and Q. Ju, Global large solutions of magnetohydrodynamics with temperature-dependent heat conductivity, Z. Angew. Math. Phys., 66 (2015), 865-889.  doi: 10.1007/s00033-014-0446-1.  Google Scholar

[16]

J. Jang, Local well-posedness of dynamics of viscous gaseous stars, Arch. Rational Mech. Anal., 195 (2010), 797-863.  doi: 10.1007/s00205-009-0253-6.  Google Scholar

[17]

J. Jang and N. Masmoudi, Well-posedness for compressible Euler equations with physical vacuum singularity, Commun. Pure Appl. Math., 62 (2009), 1327-1385.  doi: 10.1002/cpa.20285.  Google Scholar

[18]

J. Jang and N. Masmoudi, Well-posedness of compressible Euler equations in a physical vacuum, Commun. Pure Appl. Math., 68 (2015), 61-111.  doi: 10.1002/cpa.21517.  Google Scholar

[19]

S. JiangZ. Xin and P. Zhang, Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity, Methods and Applications of Analysis, 12 (2005), 239-251.  doi: 10.4310/MAA.2005.v12.n3.a2.  Google Scholar

[20]

H. Li and X. Zhang, Global strong solutions to radial symmetric compressible Navier-Stokes equations with free boundary, J. Differential Equations, 261 (2016), 6341-6367.  doi: 10.1016/j.jde.2016.08.038.  Google Scholar

[21]

T.-P. LiuZ. Xin and T. Yang, Vacuum states for compressible flow, Discrete and Continuous Dynamical Systems, 4 (1998), 1-32.   Google Scholar

[22]

T.-P. Liu and T. Yang, Compressible flow with vacuum and physical singularity, Methods Appl. Anal., 7 (2000), 495-509.  doi: 10.4310/MAA.2000.v7.n3.a7.  Google Scholar

[23]

T. LuoZ. Xin and T. Yang, Interface behavior of compressible Navier-Stokes equations with vacuum, SIAM J. Math. Anal., 31 (2000), 1175-1191.  doi: 10.1137/S0036141097331044.  Google Scholar

[24]

T. Luo and H. Zeng, Global existence of smooth solutions and convergence to Barenblatt solutions for the physical vacuum free boundary problem of compressible Euler equations with damping, Communications on Pure and Applied Mathematics, 69 (2016), 1354-1396.  doi: 10.1002/cpa.21562.  Google Scholar

[25]

Y. Ou and H. Zeng, Global strong solutions to the vacuum free boundary problem for compressible Navier-Stokes equations with degenerate viscosity and gravity force, J. Differential Equations, 259 (2015), 6803-6829.  doi: 10.1016/j.jde.2015.08.008.  Google Scholar

[26]

M. Okada, Free boundary problem for one-dimensional motions of compressible gas and vacuum, Japan J. Indust. Appl. Math., 21 (2004), 109-128.  doi: 10.1007/BF03167467.  Google Scholar

[27]

M. Okada and T. Makino, Free boundary problem for the equation of spherically symmetric motion of viscous gas, Japan J. Indust. Appl. Math., 10 (1993), 219-235.  doi: 10.1007/BF03167573.  Google Scholar

[28]

M. OkadaS. Matušč-Necasová and T. Makino, Free boundary problem for the equation of one-dimensional motion of compressible gas with density-dependent viscosity, Ann. Univ. Ferrara Sez. Ⅶ (N.S.), 48 (2002), 1-20.   Google Scholar

[29]

X. Qin and Z. Yao, Global smooth solutions of the compressible Navier-Stokes equations with density-dependent viscosity, J. Diff. Eqns., 244 (2008), 2041-2061.  doi: 10.1016/j.jde.2007.11.001.  Google Scholar

[30]

X. Qin and Z. Yao, Global solutions to planar magnetohydrodynamic equations with radiation and large initial data, Nonlinearity, 26 (2013), 591-619.  doi: 10.1088/0951-7715/26/2/591.  Google Scholar

[31]

Y. QinX. Liu and X. Yang, Global existence and exponential stability for a 1D compressible and radiative MHD flow, J. Differential Equations, 253 (2012), 1439-1488.  doi: 10.1016/j.jde.2012.05.003.  Google Scholar

[32]

J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117.  doi: 10.1137/0521061.  Google Scholar

[33]

M. Umehara and A. Tani, Free-boundary problem of the one-dimensional equations for a viscous and heat-conductive gaseous flow under the self-gravitation, Math. Models Methods Appl. Sci., 23 (2013), 1377-1419.  doi: 10.1142/S0218202513500127.  Google Scholar

[34]

S. VongT. Yang and C. Zhu, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum. Ⅱ, J. Diff. Eqs., 192 (2003), 475-501.  doi: 10.1016/S0022-0396(03)00060-3.  Google Scholar

[35]

D. Wang, On the global solution and interface behaviour of viscous compressible real flow with free boundaries, Nonlinearity, 16 (2003), 719-733.  doi: 10.1088/0951-7715/16/2/321.  Google Scholar

[36]

H. Wen and C. Zhu, Global Classical Large Solutions to Navier-Stokes Equations for Viscous Compressible and Heat-Conducting Fluids with Vacuum, SIAM J. Math. Anal., 45 (2013), 431-468.  doi: 10.1137/120877829.  Google Scholar

[37]

H. Wen and C. Zhu, Global symmetric classical solutions of the full compressible Navier-Stokes equations with vacuum and large initial data, J. Math. Pures Appl., 102 (2014), 498-545.  doi: 10.1016/j.matpur.2013.12.003.  Google Scholar

[38]

T. YangZ. Yao and C. Zhu, Compressible Navier-Stokes equations with density-dependent viscosity and vacuum, Comm. Partial Differential Equations, 26 (2001), 965-981.  doi: 10.1081/PDE-100002385.  Google Scholar

[39]

T. Yang and H. Zhao, A vacuum problem for the one-dimensional compressible Navier-Stokes equations with density-dependent viscosity, J. Diff. Eqs., 184 (2002), 163-184.  doi: 10.1006/jdeq.2001.4140.  Google Scholar

[40]

T. Yang and C. Zhu, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum, Comm. Math. Phys., 230 (2002), 329-363.  doi: 10.1007/s00220-002-0703-6.  Google Scholar

[41]

Y. -B. Zel'dovich and Y. -P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vol. 2, Academic, New York, 1967. Google Scholar

[42]

H. Zeng, Global-in-time smoothness of solutions to the vacuum free boundary problem for compressible isentropic Navier-Stokes equations, Nonlinearity, 28 (2015), 331-345.  doi: 10.1088/0951-7715/28/2/331.  Google Scholar

[43]

C. Zhu, Asymptotic behavior of compressible Navier-Stokes equations with density-dependent viscosity and vacuum, Comm. in Math. Phys., 293 (2010), 279-299.  doi: 10.1007/s00220-009-0914-1.  Google Scholar

[44]

C. Zhu and R. Zi, Asymptotic behavior of solutions to 1D compressible Navier-Stokes equations with gravity and vacuum, Discrete Contin. Dyn. Syst., 30 (2011), 1263-1283.  doi: 10.3934/dcds.2011.30.1263.  Google Scholar

show all references

References:
[1]

E. Becker, Gasdynamik, Teubner, Stuttgart, 1966. Google Scholar

[2]

D. Bian, B. Guo and J. Zhang, Global strong spherically symmetric solutions to the full compressible Navier-Stokes equations with stress free boundary J. Math. Phys. , 56 (2015), 023509, 23 pp. Google Scholar

[3]

G.-Q. Chen and M. Kratka, Global solutions to the Navier-Stokes equations for compressible heat conducting flow with symmetry and free boundary, Comm. Partial Diff. Eqs., 27 (2002), 907-943.  doi: 10.1081/PDE-120004889.  Google Scholar

[4]

G.-Q. Chen and D. Wang, Global solutions of nonlinear magnetohydrodynamics with large initial data, J. Diff. Eqs., 182 (2002), 344-376.  doi: 10.1006/jdeq.2001.4111.  Google Scholar

[5]

D. Coutand and S. Shkoller, Well-posedness in smooth function spaces for the moving-boundary 1-D compressible Euler equations in physical vacuum, Commun. Pure Appl. Math., 64 (2011), 328-366.  doi: 10.1002/cpa.20344.  Google Scholar

[6]

D. Coutand and S. Shkoller, Well-posedness in smooth function spaces for the moving-boundary three-dimensional compressible Euler equations in physical vacuum, Arch. Ration. Mech. Anal., 206 (2012), 515-616.  doi: 10.1007/s00205-012-0536-1.  Google Scholar

[7]

Q. Duan, On the dynamics of Navier-Stokes equations for a shallow water model, J. Differential Equations, 250 (2011), 2687-2714.  doi: 10.1016/j.jde.2011.01.010.  Google Scholar

[8]

D. Fang and T. Zhang, Global behavior of compressible Navier-Stokes equations with a degenerate viscosity coefficient, Arch. Rational Mech. Anal., 182 (2006), 223-253.  doi: 10.1007/s00205-006-0425-6.  Google Scholar

[9]

D. Fang and T. Zhang, Global behavior of spherically symmetric Navier-Stokes-Poisson system with degenerate viscosity coefficients, Arch. Rational Mech. Anal., 191 (2009), 195-243.  doi: 10.1007/s00205-008-0183-8.  Google Scholar

[10] E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford University Press, Oxford, 2004.   Google Scholar
[11]

Z. GuoH. Li and Z. Xin, Lagrange structure and dynamics for solutions to the spherically symmetric compressible Navier-Stokes equations, Comm. Math. Phys., 309 (2012), 371-412.  doi: 10.1007/s00220-011-1334-6.  Google Scholar

[12]

Z. Guo and Z. Li, Global existence of weak solution to the free boundary problem for compressible Navier-Stokes, Kinet. Relat. Models, 9 (2016), 75-103.  doi: 10.3934/krm.2016.9.75.  Google Scholar

[13]

Z. Guo and C. Zhu, Global weak solutions and asymptotic behavior to 1D compressible Navier-Stokes equations with density-dependent viscosity and vacuum, J. Differential Equations, 248 (2010), 2768-2799.  doi: 10.1016/j.jde.2010.03.005.  Google Scholar

[14]

C. Hao, Remarks on the free boundary problem of compressible Euler equations in physical vacuum with general initial densities, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2885-2931.  doi: 10.3934/dcdsb.2015.20.2885.  Google Scholar

[15]

Y. Hu and Q. Ju, Global large solutions of magnetohydrodynamics with temperature-dependent heat conductivity, Z. Angew. Math. Phys., 66 (2015), 865-889.  doi: 10.1007/s00033-014-0446-1.  Google Scholar

[16]

J. Jang, Local well-posedness of dynamics of viscous gaseous stars, Arch. Rational Mech. Anal., 195 (2010), 797-863.  doi: 10.1007/s00205-009-0253-6.  Google Scholar

[17]

J. Jang and N. Masmoudi, Well-posedness for compressible Euler equations with physical vacuum singularity, Commun. Pure Appl. Math., 62 (2009), 1327-1385.  doi: 10.1002/cpa.20285.  Google Scholar

[18]

J. Jang and N. Masmoudi, Well-posedness of compressible Euler equations in a physical vacuum, Commun. Pure Appl. Math., 68 (2015), 61-111.  doi: 10.1002/cpa.21517.  Google Scholar

[19]

S. JiangZ. Xin and P. Zhang, Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity, Methods and Applications of Analysis, 12 (2005), 239-251.  doi: 10.4310/MAA.2005.v12.n3.a2.  Google Scholar

[20]

H. Li and X. Zhang, Global strong solutions to radial symmetric compressible Navier-Stokes equations with free boundary, J. Differential Equations, 261 (2016), 6341-6367.  doi: 10.1016/j.jde.2016.08.038.  Google Scholar

[21]

T.-P. LiuZ. Xin and T. Yang, Vacuum states for compressible flow, Discrete and Continuous Dynamical Systems, 4 (1998), 1-32.   Google Scholar

[22]

T.-P. Liu and T. Yang, Compressible flow with vacuum and physical singularity, Methods Appl. Anal., 7 (2000), 495-509.  doi: 10.4310/MAA.2000.v7.n3.a7.  Google Scholar

[23]

T. LuoZ. Xin and T. Yang, Interface behavior of compressible Navier-Stokes equations with vacuum, SIAM J. Math. Anal., 31 (2000), 1175-1191.  doi: 10.1137/S0036141097331044.  Google Scholar

[24]

T. Luo and H. Zeng, Global existence of smooth solutions and convergence to Barenblatt solutions for the physical vacuum free boundary problem of compressible Euler equations with damping, Communications on Pure and Applied Mathematics, 69 (2016), 1354-1396.  doi: 10.1002/cpa.21562.  Google Scholar

[25]

Y. Ou and H. Zeng, Global strong solutions to the vacuum free boundary problem for compressible Navier-Stokes equations with degenerate viscosity and gravity force, J. Differential Equations, 259 (2015), 6803-6829.  doi: 10.1016/j.jde.2015.08.008.  Google Scholar

[26]

M. Okada, Free boundary problem for one-dimensional motions of compressible gas and vacuum, Japan J. Indust. Appl. Math., 21 (2004), 109-128.  doi: 10.1007/BF03167467.  Google Scholar

[27]

M. Okada and T. Makino, Free boundary problem for the equation of spherically symmetric motion of viscous gas, Japan J. Indust. Appl. Math., 10 (1993), 219-235.  doi: 10.1007/BF03167573.  Google Scholar

[28]

M. OkadaS. Matušč-Necasová and T. Makino, Free boundary problem for the equation of one-dimensional motion of compressible gas with density-dependent viscosity, Ann. Univ. Ferrara Sez. Ⅶ (N.S.), 48 (2002), 1-20.   Google Scholar

[29]

X. Qin and Z. Yao, Global smooth solutions of the compressible Navier-Stokes equations with density-dependent viscosity, J. Diff. Eqns., 244 (2008), 2041-2061.  doi: 10.1016/j.jde.2007.11.001.  Google Scholar

[30]

X. Qin and Z. Yao, Global solutions to planar magnetohydrodynamic equations with radiation and large initial data, Nonlinearity, 26 (2013), 591-619.  doi: 10.1088/0951-7715/26/2/591.  Google Scholar

[31]

Y. QinX. Liu and X. Yang, Global existence and exponential stability for a 1D compressible and radiative MHD flow, J. Differential Equations, 253 (2012), 1439-1488.  doi: 10.1016/j.jde.2012.05.003.  Google Scholar

[32]

J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117.  doi: 10.1137/0521061.  Google Scholar

[33]

M. Umehara and A. Tani, Free-boundary problem of the one-dimensional equations for a viscous and heat-conductive gaseous flow under the self-gravitation, Math. Models Methods Appl. Sci., 23 (2013), 1377-1419.  doi: 10.1142/S0218202513500127.  Google Scholar

[34]

S. VongT. Yang and C. Zhu, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum. Ⅱ, J. Diff. Eqs., 192 (2003), 475-501.  doi: 10.1016/S0022-0396(03)00060-3.  Google Scholar

[35]

D. Wang, On the global solution and interface behaviour of viscous compressible real flow with free boundaries, Nonlinearity, 16 (2003), 719-733.  doi: 10.1088/0951-7715/16/2/321.  Google Scholar

[36]

H. Wen and C. Zhu, Global Classical Large Solutions to Navier-Stokes Equations for Viscous Compressible and Heat-Conducting Fluids with Vacuum, SIAM J. Math. Anal., 45 (2013), 431-468.  doi: 10.1137/120877829.  Google Scholar

[37]

H. Wen and C. Zhu, Global symmetric classical solutions of the full compressible Navier-Stokes equations with vacuum and large initial data, J. Math. Pures Appl., 102 (2014), 498-545.  doi: 10.1016/j.matpur.2013.12.003.  Google Scholar

[38]

T. YangZ. Yao and C. Zhu, Compressible Navier-Stokes equations with density-dependent viscosity and vacuum, Comm. Partial Differential Equations, 26 (2001), 965-981.  doi: 10.1081/PDE-100002385.  Google Scholar

[39]

T. Yang and H. Zhao, A vacuum problem for the one-dimensional compressible Navier-Stokes equations with density-dependent viscosity, J. Diff. Eqs., 184 (2002), 163-184.  doi: 10.1006/jdeq.2001.4140.  Google Scholar

[40]

T. Yang and C. Zhu, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum, Comm. Math. Phys., 230 (2002), 329-363.  doi: 10.1007/s00220-002-0703-6.  Google Scholar

[41]

Y. -B. Zel'dovich and Y. -P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vol. 2, Academic, New York, 1967. Google Scholar

[42]

H. Zeng, Global-in-time smoothness of solutions to the vacuum free boundary problem for compressible isentropic Navier-Stokes equations, Nonlinearity, 28 (2015), 331-345.  doi: 10.1088/0951-7715/28/2/331.  Google Scholar

[43]

C. Zhu, Asymptotic behavior of compressible Navier-Stokes equations with density-dependent viscosity and vacuum, Comm. in Math. Phys., 293 (2010), 279-299.  doi: 10.1007/s00220-009-0914-1.  Google Scholar

[44]

C. Zhu and R. Zi, Asymptotic behavior of solutions to 1D compressible Navier-Stokes equations with gravity and vacuum, Discrete Contin. Dyn. Syst., 30 (2011), 1263-1283.  doi: 10.3934/dcds.2011.30.1263.  Google Scholar

[1]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[2]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[3]

Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084

[4]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[5]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[6]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[7]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[8]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

[9]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[10]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[11]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[12]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052

[13]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[14]

Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286

[15]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[16]

Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154

[17]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[18]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[19]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[20]

Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (93)
  • HTML views (152)
  • Cited by (3)

Other articles
by authors

[Back to Top]