March  2017, 22(2): 669-686. doi: 10.3934/dcdsb.2017032

A note on global existence to a higher-dimensional quasilinear chemotaxis system with consumption of chemoattractant

1. 

School of Mathematics and Statistics Science, Ludong University, Yantai 264025, China

2. 

School of Mathematics and Statistics, Beijing, Institute of Technology, Beijing 100081, China

* Corresponding author

Received  February 2016 Revised  August 2016 Published  December 2016

The Neumann boundary value problem for the chemotaxis system generalizing the prototype
$\left\{ \begin{array}{l}{u_t} = \nabla \cdot (D(u)\nabla u) - \nabla \cdot (u\nabla v),\;\;\;\;x \in \Omega ,t < 0,\\{v_t} = \Delta v - uv,\;\;\;\;\;x \in \Omega ,t < 0,\end{array} \right. \tag{KS}\label{KS} $
is considered in a smooth bounded convex domain
$Ω\subset \mathbb{R}^N(N≥2)$
, where
$D(u)≥ C_D(u+1)^{m-1}~~ \mbox{for all}~~ u≥0~~\mbox{with some}~~ m > 1~~\mbox{and}~~ C_D>0.$
If
$m >\frac{3N}{2N+2}$
and suitable regularity assumptions on the initial data are given, the corresponding initial-boundary problem possesses a global classical solution. Our paper extends the results of Wang et al. ([24]), who showed the global existence of solutions in the cases
$m>2-\frac{6}{N+4}$
(
$N≥3$
). If the flow of fluid is ignored, our result is consistent with and improves the result of Tao, Winkler ([15]) and Tao, Winkler ([17]), who proved the possibility of global boundedness, in the case that
$N=2,m>1$
and
$N= 3$
,
$m > \frac{8}{7}$
, respectively.
Citation: Jiashan Zheng, Yifu Wang. A note on global existence to a higher-dimensional quasilinear chemotaxis system with consumption of chemoattractant. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 669-686. doi: 10.3934/dcdsb.2017032
References:
[1]

N. BellomoA. BelloquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763. doi: 10.1142/S021820251550044X. Google Scholar

[2]

M. ChaeK. Kang and J. Lee, Existence of smooth solutions to coupled chemotaxis-fluid equations, Discrete Continuous Dynam. Systems, 33 (2013), 2271-2297. doi: 10.3934/dcds.2013.33.2271. Google Scholar

[3]

M. ChaeK. Kang and J. Lee, Global Existence and temporal decay in Keller-Segel models coupled to fluid equations, Comm. Part. Diff. Eqns., 39 (2014), 1205-1235. doi: 10.1080/03605302.2013.852224. Google Scholar

[4]

R. Dal PassoH. Garcke and G. Grün, A fourth-order degenerate parabolic equation: Global entropy estimates, existence, and qualitative behavior of solutions, SIAM J. Math. Anal., 29 (1998), 321-342. doi: 10.1137/S0036141096306170. Google Scholar

[5]

R. DuanA. Lorz and P. A. Markowich, Global solutions to the coupled chemotaxis-fluid equations, Comm. Part. Diff. Eqns., 35 (2010), 1635-1673. doi: 10.1080/03605302.2010.497199. Google Scholar

[6]

M. Di FrancescoA. Lorz and P. Markowich, Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior, Discrete Contin. Dyn. Syst., 28 (2010), 1437-1453. doi: 10.3934/dcds.2010.28.1437. Google Scholar

[7]

J. Lankeit, Eventual smoothness and asymptotics in a threedimensional chemotaxis system with logistic source, J. Diff. Eqns., 258 (2015), 1158-1191. doi: 10.1016/j.jde.2014.10.016. Google Scholar

[8]

J. Liu and A. Lorz, A coupled chemotaxis-fluid model: global existence, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 643-652. doi: 10.1016/j.anihpc.2011.04.005. Google Scholar

[9]

T. LiA. SuenC. Xue and M. Winkler, Global small-data solutions of a two-dimensional chemotaxis system with rotational ux term, Math. Models Methods Appl. Sci., 25 (2015), 721-746. doi: 10.1142/S0218202515500177. Google Scholar

[10]

A. Lorz, Coupled chemotaxis fluid equations, Math. Models Methods Appl. Sci., 20 (2010), 987-1004. doi: 10.1142/S0218202510004507. Google Scholar

[11]

K. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501-543. Google Scholar

[12]

G. Rosen, Steady-state distribution of bacteria chemotactic toward oxygen, Bull. Math. Biol., 40 (1978), 641-674. doi: 10.1016/S0092-8240(78)80025-1. Google Scholar

[13]

Y. Tao, Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl., 381 (2011), 521-529. doi: 10.1016/j.jmaa.2011.02.041. Google Scholar

[14]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Diff. Eqns., 252 (2012), 692-715. doi: 10.1016/j.jde.2011.08.019. Google Scholar

[15]

Y. Tao and M. Winkler, Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion, Discrete Contin. Dyn. Syst. Ser. A, 32 (2012), 1901-1914. doi: 10.3934/dcds.2012.32.1901. Google Scholar

[16]

Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Diff. Eqns., 252 (2012), 2520-2543. doi: 10.1016/j.jde.2011.07.010. Google Scholar

[17]

Y. Tao and M. Winkler, Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 157-178. doi: 10.1016/j.anihpc.2012.07.002. Google Scholar

[18]

Y. Tao and M. Winkler, Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system, Z. Angew. Math. Phys., 66 (2015), 2555-2573. doi: 10.1007/s00033-015-0541-y. Google Scholar

[19]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Stud. Math. Appl.,vol.2, North-Holland, Amsterdam, 1977.Google Scholar

[20]

I. TuvalL. CisnerosC. DombrowskiC. WolgemuthJ. Kessler and R. Goldstein, Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA, 102 (2005), 2277-2282. Google Scholar

[21]

G. Viglialoro, Very weak global solutions to a parabolic-parabolic chemotaxis-system with logistic source, J. Math. Anal. Appl., 439 (2016), 197-212. doi: 10.1016/j.jmaa.2016.02.069. Google Scholar

[22]

L. WangY. Li and C. Mu, Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source, Discrete Contin. Dyn. Syst. Ser. A., 34 (2014), 789-802. doi: 10.3934/dcds.2014.34.789. Google Scholar

[23]

L. WangC. Mu and S. Zhou, Boundedness in a parabolic-parabolic chemotaxis system with nonlinear diffusion, Z. Angew. Math. Phys., 65 (2014), 1137-1152. doi: 10.1007/s00033-013-0375-4. Google Scholar

[24]

L. WangC. MuK. Lin and J. Zhao, Global existence to a higher-dimensional quasilinear chemotaxis system with consumption of chemoattractant, Z. Angew. Math. Phys., 66 (2015), 1633-1648. doi: 10.1007/s00033-014-0491-9. Google Scholar

[25]

Y. Wang and Z. Xiang, Global existence and boundedness in a higher-dimensional quasilinear chemotaxis system, Z. Angew. Math. Phys., 66 (2015), 3159-3179. doi: 10.1007/s00033-015-0557-3. Google Scholar

[26]

M. Winkler, Chemotaxis with logistic source: Very weak global solutions and their boundedness properties, J. Math. Anal. Appl., 348 (2008), 708-729. doi: 10.1016/j.jmaa.2008.07.071. Google Scholar

[27]

M. Winkler, Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Diff. Eqns., 37 (2012), 319-351. doi: 10.1080/03605302.2011.591865. Google Scholar

[28]

M. Winkler, Stabilization in a two-dimensional chemotaxis-Navier-Stokes system, Arch. Ration. Mech. Anal., 211 (2014), 455-487. doi: 10.1007/s00205-013-0678-9. Google Scholar

[29]

M. Winkler, Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1329-1352. doi: 10.1016/j.anihpc.2015.05.002. Google Scholar

[30]

M. Winkler, Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity, Calculus of Variations and Partial Diff. Eqns., 54 (2015), 3789-3828. doi: 10.1007/s00526-015-0922-2. Google Scholar

[31]

Q. Zhang and X. Zheng, Global well-posedness for the two-dimensional incompressible chemotaxis-Navier-Stokes equations, SIAM J. Math. Anal., 46 (2014), 3078-3105. doi: 10.1137/130936920. Google Scholar

[32]

J. Zheng, Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source, J. Diff. Eqns., 259 (2015), 120-140. doi: 10.1016/j.jde.2015.02.003. Google Scholar

show all references

References:
[1]

N. BellomoA. BelloquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763. doi: 10.1142/S021820251550044X. Google Scholar

[2]

M. ChaeK. Kang and J. Lee, Existence of smooth solutions to coupled chemotaxis-fluid equations, Discrete Continuous Dynam. Systems, 33 (2013), 2271-2297. doi: 10.3934/dcds.2013.33.2271. Google Scholar

[3]

M. ChaeK. Kang and J. Lee, Global Existence and temporal decay in Keller-Segel models coupled to fluid equations, Comm. Part. Diff. Eqns., 39 (2014), 1205-1235. doi: 10.1080/03605302.2013.852224. Google Scholar

[4]

R. Dal PassoH. Garcke and G. Grün, A fourth-order degenerate parabolic equation: Global entropy estimates, existence, and qualitative behavior of solutions, SIAM J. Math. Anal., 29 (1998), 321-342. doi: 10.1137/S0036141096306170. Google Scholar

[5]

R. DuanA. Lorz and P. A. Markowich, Global solutions to the coupled chemotaxis-fluid equations, Comm. Part. Diff. Eqns., 35 (2010), 1635-1673. doi: 10.1080/03605302.2010.497199. Google Scholar

[6]

M. Di FrancescoA. Lorz and P. Markowich, Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior, Discrete Contin. Dyn. Syst., 28 (2010), 1437-1453. doi: 10.3934/dcds.2010.28.1437. Google Scholar

[7]

J. Lankeit, Eventual smoothness and asymptotics in a threedimensional chemotaxis system with logistic source, J. Diff. Eqns., 258 (2015), 1158-1191. doi: 10.1016/j.jde.2014.10.016. Google Scholar

[8]

J. Liu and A. Lorz, A coupled chemotaxis-fluid model: global existence, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 643-652. doi: 10.1016/j.anihpc.2011.04.005. Google Scholar

[9]

T. LiA. SuenC. Xue and M. Winkler, Global small-data solutions of a two-dimensional chemotaxis system with rotational ux term, Math. Models Methods Appl. Sci., 25 (2015), 721-746. doi: 10.1142/S0218202515500177. Google Scholar

[10]

A. Lorz, Coupled chemotaxis fluid equations, Math. Models Methods Appl. Sci., 20 (2010), 987-1004. doi: 10.1142/S0218202510004507. Google Scholar

[11]

K. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501-543. Google Scholar

[12]

G. Rosen, Steady-state distribution of bacteria chemotactic toward oxygen, Bull. Math. Biol., 40 (1978), 641-674. doi: 10.1016/S0092-8240(78)80025-1. Google Scholar

[13]

Y. Tao, Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl., 381 (2011), 521-529. doi: 10.1016/j.jmaa.2011.02.041. Google Scholar

[14]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Diff. Eqns., 252 (2012), 692-715. doi: 10.1016/j.jde.2011.08.019. Google Scholar

[15]

Y. Tao and M. Winkler, Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion, Discrete Contin. Dyn. Syst. Ser. A, 32 (2012), 1901-1914. doi: 10.3934/dcds.2012.32.1901. Google Scholar

[16]

Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Diff. Eqns., 252 (2012), 2520-2543. doi: 10.1016/j.jde.2011.07.010. Google Scholar

[17]

Y. Tao and M. Winkler, Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 157-178. doi: 10.1016/j.anihpc.2012.07.002. Google Scholar

[18]

Y. Tao and M. Winkler, Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system, Z. Angew. Math. Phys., 66 (2015), 2555-2573. doi: 10.1007/s00033-015-0541-y. Google Scholar

[19]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Stud. Math. Appl.,vol.2, North-Holland, Amsterdam, 1977.Google Scholar

[20]

I. TuvalL. CisnerosC. DombrowskiC. WolgemuthJ. Kessler and R. Goldstein, Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA, 102 (2005), 2277-2282. Google Scholar

[21]

G. Viglialoro, Very weak global solutions to a parabolic-parabolic chemotaxis-system with logistic source, J. Math. Anal. Appl., 439 (2016), 197-212. doi: 10.1016/j.jmaa.2016.02.069. Google Scholar

[22]

L. WangY. Li and C. Mu, Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source, Discrete Contin. Dyn. Syst. Ser. A., 34 (2014), 789-802. doi: 10.3934/dcds.2014.34.789. Google Scholar

[23]

L. WangC. Mu and S. Zhou, Boundedness in a parabolic-parabolic chemotaxis system with nonlinear diffusion, Z. Angew. Math. Phys., 65 (2014), 1137-1152. doi: 10.1007/s00033-013-0375-4. Google Scholar

[24]

L. WangC. MuK. Lin and J. Zhao, Global existence to a higher-dimensional quasilinear chemotaxis system with consumption of chemoattractant, Z. Angew. Math. Phys., 66 (2015), 1633-1648. doi: 10.1007/s00033-014-0491-9. Google Scholar

[25]

Y. Wang and Z. Xiang, Global existence and boundedness in a higher-dimensional quasilinear chemotaxis system, Z. Angew. Math. Phys., 66 (2015), 3159-3179. doi: 10.1007/s00033-015-0557-3. Google Scholar

[26]

M. Winkler, Chemotaxis with logistic source: Very weak global solutions and their boundedness properties, J. Math. Anal. Appl., 348 (2008), 708-729. doi: 10.1016/j.jmaa.2008.07.071. Google Scholar

[27]

M. Winkler, Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Diff. Eqns., 37 (2012), 319-351. doi: 10.1080/03605302.2011.591865. Google Scholar

[28]

M. Winkler, Stabilization in a two-dimensional chemotaxis-Navier-Stokes system, Arch. Ration. Mech. Anal., 211 (2014), 455-487. doi: 10.1007/s00205-013-0678-9. Google Scholar

[29]

M. Winkler, Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1329-1352. doi: 10.1016/j.anihpc.2015.05.002. Google Scholar

[30]

M. Winkler, Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity, Calculus of Variations and Partial Diff. Eqns., 54 (2015), 3789-3828. doi: 10.1007/s00526-015-0922-2. Google Scholar

[31]

Q. Zhang and X. Zheng, Global well-posedness for the two-dimensional incompressible chemotaxis-Navier-Stokes equations, SIAM J. Math. Anal., 46 (2014), 3078-3105. doi: 10.1137/130936920. Google Scholar

[32]

J. Zheng, Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source, J. Diff. Eqns., 259 (2015), 120-140. doi: 10.1016/j.jde.2015.02.003. Google Scholar

[1]

Johannes Lankeit, Yulan Wang. Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6099-6121. doi: 10.3934/dcds.2017262

[2]

Huanhuan Qiu, Shangjiang Guo. Global existence and stability in a two-species chemotaxis system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1569-1587. doi: 10.3934/dcdsb.2018220

[3]

Tobias Black. Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1253-1272. doi: 10.3934/dcdsb.2017061

[4]

Tomasz Cieślak, Kentarou Fujie. Global existence in the 1D quasilinear parabolic-elliptic chemotaxis system with critical nonlinearity. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 165-176. doi: 10.3934/dcdss.2020009

[5]

Feng Li, Yuxiang Li. Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5409-5436. doi: 10.3934/dcdsb.2019064

[6]

T. Hillen, K. Painter, Christian Schmeiser. Global existence for chemotaxis with finite sampling radius. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 125-144. doi: 10.3934/dcdsb.2007.7.125

[7]

Sainan Wu, Junping Shi, Boying Wu. Global existence of solutions to an attraction-repulsion chemotaxis model with growth. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1037-1058. doi: 10.3934/cpaa.2017050

[8]

Radek Erban, Hyung Ju Hwang. Global existence results for complex hyperbolic models of bacterial chemotaxis. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1239-1260. doi: 10.3934/dcdsb.2006.6.1239

[9]

Abelardo Duarte-Rodríguez, Lucas C. F. Ferreira, Élder J. Villamizar-Roa. Global existence for an attraction-repulsion chemotaxis fluid model with logistic source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 423-447. doi: 10.3934/dcdsb.2018180

[10]

Wei Wang, Yan Li, Hao Yu. Global boundedness in higher dimensions for a fully parabolic chemotaxis system with singular sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3663-3669. doi: 10.3934/dcdsb.2017147

[11]

Ke Lin, Chunlai Mu. Global dynamics in a fully parabolic chemotaxis system with logistic source. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5025-5046. doi: 10.3934/dcds.2016018

[12]

Mengyao Ding, Wei Wang. Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4665-4684. doi: 10.3934/dcdsb.2018328

[13]

Philippe Laurençot. Global bounded and unbounded solutions to a chemotaxis system with indirect signal production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6419-6444. doi: 10.3934/dcdsb.2019145

[14]

Tong Yang, Fahuai Yi. Global existence and uniqueness for a hyperbolic system with free boundary. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 763-780. doi: 10.3934/dcds.2001.7.763

[15]

Yuan Lou, Wei-Ming Ni, Yaping Wu. On the global existence of a cross-diffusion system. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 193-203. doi: 10.3934/dcds.1998.4.193

[16]

Huiqiang Jiang. Global existence of solutions of an activator-inhibitor system. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 737-751. doi: 10.3934/dcds.2006.14.737

[17]

Henghui Zou. On global existence for the Gierer-Meinhardt system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 583-591. doi: 10.3934/dcds.2015.35.583

[18]

Yuming Qin, Xinguang Yang, Zhiyong Ma. Global existence of solutions for the thermoelastic Bresse system. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1395-1406. doi: 10.3934/cpaa.2014.13.1395

[19]

Marcel Freitag. Global existence and boundedness in a chemorepulsion system with superlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5943-5961. doi: 10.3934/dcds.2018258

[20]

Qi Wang, Lu Zhang, Jingyue Yang, Jia Hu. Global existence and steady states of a two competing species Keller--Segel chemotaxis model. Kinetic & Related Models, 2015, 8 (4) : 777-807. doi: 10.3934/krm.2015.8.777

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (10)
  • HTML views (101)
  • Cited by (0)

Other articles
by authors

[Back to Top]