\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model

C. Lei is supported by the China Scholarship Council for 2 years of study at University of New England, Y. Du was supported by the Australian Research Council.
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • We give a complete description of the long-time asymptotic profile of the solution to a free boundary model considered recently in [10]. This model describes the spreading of an invasive species in an environment which shifts with a constant speed, and the research of [10] indicates that the species may vanish, or spread successfully, or fall in a borderline case.In the case of successful spreading, the long-time behavior of the population is not completely understood in [10].Here we show that the spreading of the species is governed by two traveling waves, one has the speed of the shifting environment, giving the profile of the retreating tail of the population, while the other has a faster speed determined by a semi-wave, representing the profile of the advancing front of the population.

    Mathematics Subject Classification: Primary:35K20, 35R35;Secondary:92B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] S. B. Angenent, The zero set of a solution of a parabolic equation, J. Reine Angew. Math., 390 (1988), 79-96.  doi: 10.1515/crll.1988.390.79.
    [2] H. BerestyckiO. DiekmannC. J. Nagelkerke and P. A. Zegeling, Can a species keep pace with a shifting climate?, Bull. Math. Biol., 71 (2009), 399-429.  doi: 10.1007/s11538-008-9367-5.
    [3] J. CaiB. Lou and M. Zhou, Asymptotic behavior of solutions of a reaction diffusion equation with free boundary conditions, J. Dynam. Differential Equations, 26 (2014), 1007-1028.  doi: 10.1007/s10884-014-9404-z.
    [4] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations McGraw-Hill, New York, 1955.
    [5] Y. Du and Z. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.  doi: 10.1137/090771089.
    [6] Y. Du and B. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc. (JEMS), 17 (2015), 2673-2724.  doi: 10.4171/JEMS/568.
    [7] Y. DuB. Lou and M. Zhou, Nonlinear diffusion problems with free boundaries: Convergence, transition speed and zero number arguments, SIAM J. Math. Anal., 47 (2015), 3555-3584.  doi: 10.1137/140994848.
    [8] Y. Du and L. Ma, Logistic type equations on $\mathbb{R}^N$ by a squeezing method involving boundary blow-up solutions, J. London Math. Soc., 64 (2001), 107-124.  doi: 10.1017/S0024610701002289.
    [9] Y. DuH. Matsuzawa and M. Zhou, Sharp estimate of the spreading speed determined by nonlinear free boundary problems, SIAM J. Math. Anal., 46 (2014), 375-396.  doi: 10.1137/130908063.
    [10] Y. Du, L. Wei and L. Zhou, Spreading in a shifting environment modeled by the diffusive logistic equation with a free boundary, Preprint, arXiv: 1508.06246
    [11] Y. Du, M. Wang and M. Zhou, Semi-wave and spreading speed for the diffusive competition model with a free boundary J. Math. Pures Appl. , in press.
    [12] H. GuB. Lou and M. Zhou, Long time behavior of solutions of Fisher-KPP equation with advection and free boundaries, J. Funct. Anal., 269 (2015), 1714-1768.  doi: 10.1016/j.jfa.2015.07.002.
    [13] Y. Kaneko and H. Matsuzawa, Spreading speed and sharp asymptotic profiles of solutions in free boundary problems for nonlinear advection-diffusion equations, J. Math. Anal. Appl., 428 (2015), 43-76.  doi: 10.1016/j.jmaa.2015.02.051.
    [14] B. LiS. BewickJ. Shang and W. Fagan, Persistence and spread of a species with a shifting habitat edge, SIAM J. Appl. Math., 74 (2014), 1397-1417.  doi: 10.1137/130938463.
  • 加载中
SHARE

Article Metrics

HTML views(2053) PDF downloads(338) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return