• Previous Article
    Transboundary capital and pollution flows and the emergence of regional inequalities
  • DCDS-B Home
  • This Issue
  • Next Article
    Global existence and regularity results for strongly coupled nonregular parabolic systems via iterative methods
May  2017, 22(3): 895-911. doi: 10.3934/dcdsb.2017045

Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model

1. 

Department of Mathematics, University of Science and Technology of China, Hefei 230026, China

2. 

School of Science and Technology, University of New England, Armidale, NSW 2351, Australia

Received  September 2015 Revised  November 2015 Published  January 2017

Fund Project: C. Lei is supported by the China Scholarship Council for 2 years of study at University of New England, Y. Du was supported by the Australian Research Council.

We give a complete description of the long-time asymptotic profile of the solution to a free boundary model considered recently in [10]. This model describes the spreading of an invasive species in an environment which shifts with a constant speed, and the research of [10] indicates that the species may vanish, or spread successfully, or fall in a borderline case.In the case of successful spreading, the long-time behavior of the population is not completely understood in [10].Here we show that the spreading of the species is governed by two traveling waves, one has the speed of the shifting environment, giving the profile of the retreating tail of the population, while the other has a faster speed determined by a semi-wave, representing the profile of the advancing front of the population.

Citation: Chengxia Lei, Yihong Du. Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 895-911. doi: 10.3934/dcdsb.2017045
References:
[1]

S. B. Angenent, The zero set of a solution of a parabolic equation, J. Reine Angew. Math., 390 (1988), 79-96.  doi: 10.1515/crll.1988.390.79.  Google Scholar

[2]

H. BerestyckiO. DiekmannC. J. Nagelkerke and P. A. Zegeling, Can a species keep pace with a shifting climate?, Bull. Math. Biol., 71 (2009), 399-429.  doi: 10.1007/s11538-008-9367-5.  Google Scholar

[3]

J. CaiB. Lou and M. Zhou, Asymptotic behavior of solutions of a reaction diffusion equation with free boundary conditions, J. Dynam. Differential Equations, 26 (2014), 1007-1028.  doi: 10.1007/s10884-014-9404-z.  Google Scholar

[4]

E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations McGraw-Hill, New York, 1955. Google Scholar

[5]

Y. Du and Z. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.  doi: 10.1137/090771089.  Google Scholar

[6]

Y. Du and B. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc. (JEMS), 17 (2015), 2673-2724.  doi: 10.4171/JEMS/568.  Google Scholar

[7]

Y. DuB. Lou and M. Zhou, Nonlinear diffusion problems with free boundaries: Convergence, transition speed and zero number arguments, SIAM J. Math. Anal., 47 (2015), 3555-3584.  doi: 10.1137/140994848.  Google Scholar

[8]

Y. Du and L. Ma, Logistic type equations on $\mathbb{R}^N$ by a squeezing method involving boundary blow-up solutions, J. London Math. Soc., 64 (2001), 107-124.  doi: 10.1017/S0024610701002289.  Google Scholar

[9]

Y. DuH. Matsuzawa and M. Zhou, Sharp estimate of the spreading speed determined by nonlinear free boundary problems, SIAM J. Math. Anal., 46 (2014), 375-396.  doi: 10.1137/130908063.  Google Scholar

[10]

Y. Du, L. Wei and L. Zhou, Spreading in a shifting environment modeled by the diffusive logistic equation with a free boundary, Preprint, arXiv: 1508.06246 Google Scholar

[11]

Y. Du, M. Wang and M. Zhou, Semi-wave and spreading speed for the diffusive competition model with a free boundary J. Math. Pures Appl. , in press. Google Scholar

[12]

H. GuB. Lou and M. Zhou, Long time behavior of solutions of Fisher-KPP equation with advection and free boundaries, J. Funct. Anal., 269 (2015), 1714-1768.  doi: 10.1016/j.jfa.2015.07.002.  Google Scholar

[13]

Y. Kaneko and H. Matsuzawa, Spreading speed and sharp asymptotic profiles of solutions in free boundary problems for nonlinear advection-diffusion equations, J. Math. Anal. Appl., 428 (2015), 43-76.  doi: 10.1016/j.jmaa.2015.02.051.  Google Scholar

[14]

B. LiS. BewickJ. Shang and W. Fagan, Persistence and spread of a species with a shifting habitat edge, SIAM J. Appl. Math., 74 (2014), 1397-1417.  doi: 10.1137/130938463.  Google Scholar

show all references

References:
[1]

S. B. Angenent, The zero set of a solution of a parabolic equation, J. Reine Angew. Math., 390 (1988), 79-96.  doi: 10.1515/crll.1988.390.79.  Google Scholar

[2]

H. BerestyckiO. DiekmannC. J. Nagelkerke and P. A. Zegeling, Can a species keep pace with a shifting climate?, Bull. Math. Biol., 71 (2009), 399-429.  doi: 10.1007/s11538-008-9367-5.  Google Scholar

[3]

J. CaiB. Lou and M. Zhou, Asymptotic behavior of solutions of a reaction diffusion equation with free boundary conditions, J. Dynam. Differential Equations, 26 (2014), 1007-1028.  doi: 10.1007/s10884-014-9404-z.  Google Scholar

[4]

E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations McGraw-Hill, New York, 1955. Google Scholar

[5]

Y. Du and Z. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.  doi: 10.1137/090771089.  Google Scholar

[6]

Y. Du and B. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc. (JEMS), 17 (2015), 2673-2724.  doi: 10.4171/JEMS/568.  Google Scholar

[7]

Y. DuB. Lou and M. Zhou, Nonlinear diffusion problems with free boundaries: Convergence, transition speed and zero number arguments, SIAM J. Math. Anal., 47 (2015), 3555-3584.  doi: 10.1137/140994848.  Google Scholar

[8]

Y. Du and L. Ma, Logistic type equations on $\mathbb{R}^N$ by a squeezing method involving boundary blow-up solutions, J. London Math. Soc., 64 (2001), 107-124.  doi: 10.1017/S0024610701002289.  Google Scholar

[9]

Y. DuH. Matsuzawa and M. Zhou, Sharp estimate of the spreading speed determined by nonlinear free boundary problems, SIAM J. Math. Anal., 46 (2014), 375-396.  doi: 10.1137/130908063.  Google Scholar

[10]

Y. Du, L. Wei and L. Zhou, Spreading in a shifting environment modeled by the diffusive logistic equation with a free boundary, Preprint, arXiv: 1508.06246 Google Scholar

[11]

Y. Du, M. Wang and M. Zhou, Semi-wave and spreading speed for the diffusive competition model with a free boundary J. Math. Pures Appl. , in press. Google Scholar

[12]

H. GuB. Lou and M. Zhou, Long time behavior of solutions of Fisher-KPP equation with advection and free boundaries, J. Funct. Anal., 269 (2015), 1714-1768.  doi: 10.1016/j.jfa.2015.07.002.  Google Scholar

[13]

Y. Kaneko and H. Matsuzawa, Spreading speed and sharp asymptotic profiles of solutions in free boundary problems for nonlinear advection-diffusion equations, J. Math. Anal. Appl., 428 (2015), 43-76.  doi: 10.1016/j.jmaa.2015.02.051.  Google Scholar

[14]

B. LiS. BewickJ. Shang and W. Fagan, Persistence and spread of a species with a shifting habitat edge, SIAM J. Appl. Math., 74 (2014), 1397-1417.  doi: 10.1137/130938463.  Google Scholar

[1]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[2]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[3]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[4]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[5]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[6]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[7]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[8]

Ching-Hui Wang, Sheng-Chen Fu. Traveling wave solutions to diffusive Holling-Tanner predator-prey models. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021007

[9]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[10]

Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084

[11]

Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154

[12]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[13]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[14]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[15]

Claude-Michel Brauner, Luca Lorenzi. Instability of free interfaces in premixed flame propagation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 575-596. doi: 10.3934/dcdss.2020363

[16]

Aurelia Dymek. Proximality of multidimensional $ \mathscr{B} $-free systems. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021013

[17]

Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020364

[18]

Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020360

[19]

Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1223-1241. doi: 10.3934/dcdsb.2020251

[20]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (122)
  • HTML views (68)
  • Cited by (6)

Other articles
by authors

[Back to Top]