We give a complete description of the long-time asymptotic profile of the solution to a free boundary model considered recently in [
Citation: |
[1] |
S. B. Angenent, The zero set of a solution of a parabolic equation, J. Reine Angew. Math., 390 (1988), 79-96.
doi: 10.1515/crll.1988.390.79.![]() ![]() ![]() |
[2] |
H. Berestycki, O. Diekmann, C. J. Nagelkerke and P. A. Zegeling, Can a species keep pace with a shifting climate?, Bull. Math. Biol., 71 (2009), 399-429.
doi: 10.1007/s11538-008-9367-5.![]() ![]() ![]() |
[3] |
J. Cai, B. Lou and M. Zhou, Asymptotic behavior of solutions of a reaction diffusion equation with free boundary conditions, J. Dynam. Differential Equations, 26 (2014), 1007-1028.
doi: 10.1007/s10884-014-9404-z.![]() ![]() ![]() |
[4] |
E. A. Coddington and N. Levinson,
Theory of Ordinary Differential Equations McGraw-Hill, New York, 1955.
![]() |
[5] |
Y. Du and Z. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.
doi: 10.1137/090771089.![]() ![]() ![]() |
[6] |
Y. Du and B. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc. (JEMS), 17 (2015), 2673-2724.
doi: 10.4171/JEMS/568.![]() ![]() ![]() |
[7] |
Y. Du, B. Lou and M. Zhou, Nonlinear diffusion problems with free boundaries: Convergence, transition speed and zero number arguments, SIAM J. Math. Anal., 47 (2015), 3555-3584.
doi: 10.1137/140994848.![]() ![]() ![]() |
[8] |
Y. Du and L. Ma, Logistic type equations on $\mathbb{R}^N$ by a squeezing method involving boundary blow-up solutions, J. London Math. Soc., 64 (2001), 107-124.
doi: 10.1017/S0024610701002289.![]() ![]() ![]() |
[9] |
Y. Du, H. Matsuzawa and M. Zhou, Sharp estimate of the spreading speed determined by nonlinear free boundary problems, SIAM J. Math. Anal., 46 (2014), 375-396.
doi: 10.1137/130908063.![]() ![]() ![]() |
[10] |
Y. Du, L. Wei and L. Zhou, Spreading in a shifting environment modeled by the diffusive logistic equation with a free boundary, Preprint,
arXiv: 1508.06246
![]() |
[11] |
Y. Du, M. Wang and M. Zhou, Semi-wave and spreading speed for the diffusive competition model with a free boundary J. Math. Pures Appl. , in press.
![]() |
[12] |
H. Gu, B. Lou and M. Zhou, Long time behavior of solutions of Fisher-KPP equation with advection and free boundaries, J. Funct. Anal., 269 (2015), 1714-1768.
doi: 10.1016/j.jfa.2015.07.002.![]() ![]() ![]() |
[13] |
Y. Kaneko and H. Matsuzawa, Spreading speed and sharp asymptotic profiles of solutions in free boundary problems for nonlinear advection-diffusion equations, J. Math. Anal. Appl., 428 (2015), 43-76.
doi: 10.1016/j.jmaa.2015.02.051.![]() ![]() ![]() |
[14] |
B. Li, S. Bewick, J. Shang and W. Fagan, Persistence and spread of a species with a shifting habitat edge, SIAM J. Appl. Math., 74 (2014), 1397-1417.
doi: 10.1137/130938463.![]() ![]() ![]() |