\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On carrying-capacity construction, metapopulations and density-dependent mortality

  • Author Bio: E-mail address: jx.velasco@im.unam.mx; E-mail address: mnunez@correo.cua.uam.mx; E-mail address: gramirez@im.unam.mx; E-mail address: maribel@im.unam.mx
Abstract Full Text(HTML) Figure(10) Related Papers Cited by
  • We present a mathematical model for competition between species that includes variable carrying capacity within the framework of niche construction. We make use the classical Lotka-Volterra system for species competition and introduce a new variable which contains the dynamics of the constructed niche. The paper illustrates that the total available patches at equilibrium always exceeds the constructedniche at equilibrium in the absence of species.

    Mathematics Subject Classification: Primary:92D25, 92D40;Secondary:34D20, 37C75.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 2.  Possible scenarios for coexistence and extinction regions when $Q>1$. These are regions where an equilibrium point is feasible. The conditions that define them are necessary but not sufficient for their existence. Region e) is dashed to indicate that it is not feasible, given that not exist one or two species

    Figure 1.  Qualitative behavior of $Q$ as a function of $(\kappa_2 ,\kappa_3 )\in [0,5]\times [0,5]$ for a) $\omega_2/\omega_1>1$, b) $\omega_2/\omega_1<1$. Note the narrowing of the range where $Q>1$ when going from a) to b).

    Figure 6.  Possible scenarios for coexistence and extinction regions when $Q<1$. These are regions where an equilibrium point is feasible. The conditions that define them are necessary but not sufficient for their existence. Region e) is dashed to indicate that it is not feasible, given that not exist one or two species

    Figure 3.  Coexistence of two species for $Q>1$. This scenario corresponds to the region b) of the Fig. 2. The parameters are $\kappa_1=1, $ $\kappa_2=3.5$, $\kappa_3=1.4$, $b=0.2$, $\beta_1=3.4$, $\beta_2=1.6$ $\sigma=0.1$, $p=0.5$, $d=1$, $e=1$, $u=0.18$, $c_1=0.9$, $c_2=0.2$

    Figure 4.  Colonization by the specie $I_1$ for $Q>1$. This scenario corresponds to the region a) of the Fig. 2. The parameters are $\kappa_1=\kappa_2=1$, $\kappa_3=1.4$, $b=0.8$, $\beta_1=3.8$, $\beta_2=0.5$ $\sigma=0.5$, $p=1$, $d=1$, $e=1$, $u=0.4$, $c_1=0.5$, $c_2=0.5$

    Figure 5.  Colonization by the specie $I_2$ for $Q>1$. This scenario corresponds to the region c) of the Fig. 2. The parameters are $\kappa_1=\kappa_2=1$, $\kappa_3=1.5$, $b=0.8$, $\beta_1=3.8$, $\beta_2=3.4$ $\sigma=0.5$, $p=0.1$, $d=1$, $e=1$, $u=0.4$, $c_1=0.5$, $c_2=0.5$

    Figure 7.  Colonization by the specie $I_1$ for $Q<1$. This scenario corresponds to the region c) of the Fig. 6. The parameters are $\kappa_1=1, $ $\kappa_2=1.0$, $\kappa_3=0.5$, $b=0.8$, $\beta_1=3.8$, $\beta_2=0.5$ $\sigma=0.5$, $p=0.1$, $d=1$, $e=1$, $u=0.4$, $c_1=0.9$, $c_2=0.9$

    Figure 8.  Colonization by the specie $I_1$ for $Q<1$. This scenario corresponds to the region c) of the Fig. 6. The parameters are $\kappa_1=\kappa_2=1$, $\kappa_3=0.5$, $b=0.8$, $\beta_1=3.8$, $\beta_2=0.5$ $\sigma=0.5$, $p=1$, $d=1$, $e=1$, $u=0.4$, $c_1=0.5$, $c_2=0.5$

    Figure 9.  Colonization by the specie $I_2$ for $Q<1$. This scenario corresponds to the region a) of the Fig. 6. The parameters are $\kappa_1=\kappa_2=1$, $\kappa_3=1.1$, $b=0.8$, $\beta_1=3.8$, $\beta_2=3.4$ $\sigma=0.5$, $p=1$, $d=1$, $e=1$, $u=0.4$, $c_1=0.5$, $c_2=0.5$

    Figure 10.  Eigenvalues region for non-colonized state

  • [1] J. E. KeymerM. A. Fuentes and P. A. Marquet, Diversity emerging: From competitive exclusion to neutral coexistence in ecosystems, Theoretical Ecology, 5 (2012), 457-463.  doi: 10.1007/s12080-011-0138-9.
    [2] J. E. Keymer and P. A. Marquet, he complexity of cancer ecosystems, in TMariana Benitez, Octavio Miramontes, and Alfonso Valiente, editors Frontiers in Ecology, Evolution and Complexity, Copit Arxives, Mexico City, first edition, (2014), 101–119.
    [3] D. C. KrakauerK. M. Page and H. E. Douglas, Diversity, dilemmas, and monopolies of niche construction, The American Naturalist, 173 (2009), 26-40.  doi: 10.1086/593707.
    [4] J. Mena-LorcaJ. X. Velasco-Hernández and C. Castillo-Chavez, Density-dependent dynamics and superinfection in an epidemic model, IMA Journal of Mathematics Applied to Medicine and Biology, 16 (1999), 307-317. 
    [5] J. Mena-LorcaJ. X. Velasco-Hernández and P. A. Marquet, Coexistence in metacommunities: A three-species model, Mathematical Biosciences, 202 (2006), 42-56.  doi: 10.1016/j.mbs.2006.04.005.
    [6] F. J. Odling-Smee, K. N. Laland and M. W. Feldman, Niche Construction: The Neglected Process in Evolution, Princeton University Press, 2003.
    [7] E. W. SeabloomE. T. BorerK. GrossA. E. KendigC. LacroixC. E. MitchellE. A. Mordecai and A. G. Power, The community ecology of pathogens: Coinfection, coexistence and community composition, Ecology Letters, 18 (2015), 401-415.  doi: 10.1111/ele.12418.
    [8] D. Tilman, Competition and Biodiversity in spatially structured habitats, Ecology, 75 (1994), 2-16.  doi: 10.2307/1939377.
  • 加载中

Figures(10)

SHARE

Article Metrics

HTML views(1076) PDF downloads(177) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return