• Previous Article
    Individual based models and differential equations models of nosocomial epidemics in hospital intensive care units
  • DCDS-B Home
  • This Issue
  • Next Article
    On carrying-capacity construction, metapopulations and density-dependent mortality
May  2017, 22(3): 1111-1144. doi: 10.3934/dcdsb.2017055

On the existence of axisymmetric traveling fronts in Lotka-Volterra competition-diffusion systems in ℝ3

1. 

School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China

2. 

School of Mathematics and Information Science, Beifang University of Nationalities, Yinchuan, Ningxia 750021, China

3. 

Department of Mathematics, University of Miami, Coral Gables, FL 33146, USA

Corresponding author

Dedicated to Professor Robert Stephen Cantrell on the occasion of his 60th birthday

Received  July 2015 Revised  April 2016 Published  December 2016

This paper is concerned with the following two-species Lotka-Volterra competition-diffusion system in the three-dimensional spatial space
$\left\{ {\begin{array}{*{20}{l}}{\frac{\partial }{{\partial t}}{u_1}({\bf{x}},t) = \Delta {u_1}({\bf{x}},t) + {u_1}({\bf{x}},t)\left[ {1 - \;{u_1}({\bf{x}},t) - {k_1}{u_2}({\bf{x}},t)} \right],}\\{\frac{\partial }{{\partial t}}{u_2}({\bf{x}},t) = d\Delta {u_2}({\bf{x}},t) + r{u_2}({\bf{x}},t)\left[ {1 - {u_2}({\bf{x}},t) - {k_2}{u_1}({\bf{x}},t)} \right],}\end{array}} \right.$
where
$\mathbf{x}∈ \mathbb{R}^3$
and
$t>0$
. For the bistable case, namely
$k_1,k_2>1$
, it is well known that the system admits a one-dimensional monotone traveling front
$\mathbf{\Phi}(x+ct)=\left(\Phi_1(x+ct),\Phi_2(x+ct)\right)$
connecting two stable equilibria
$\mathbf{E}_u=(1,0)$
and
$\mathbf{E}_v=(0,1)$
, where
$c∈\mathbb{R}$
is the unique wave speed. Recently, two-dimensional Ⅴ-shaped fronts and high-dimensional pyramidal traveling fronts have been studied under the assumption that
$c>0$
. In this paper it is shown that for any
$s>c>0$
, the system admits axisymmetric traveling fronts
$\mathbf{\Psi}(\mathbf{x}^\prime,x_3+st)=\left(\Phi_1(\mathbf{x}^\prime,x_3+st),\Phi_2(\mathbf{x}^\prime, x_3+st)\right)$
in
$\mathbb{R}^3$
connecting
$\mathbf{E}_u=(1,0)$
and
$\mathbf{E}_v=(0,1)$
, where
$\mathbf{x}^\prime∈\mathbb{R}^2$
. Here an axisymmetric traveling front means a traveling front which is axially symmetric with respect to the
$x_3$
-axis. Moreover, some important qualitative properties of the axisymmetric traveling fronts are given. When
$s$
tends to
$c$
, it is proven that the axisymmetric traveling fronts converge locally uniformly to planar traveling wave fronts in
$\mathbb{R}^3$
. The existence of axisymmetric traveling fronts is obtained by constructing a sequence of pyramidal traveling fronts and taking its limit. The qualitative properties are established by using the comparison principle and appealing to the asymptotic speed of propagation for the resulting system. Finally, the nonexistence of axisymmetric traveling fronts with concave/convex level sets is discussed.
Citation: Zhi-Cheng Wang, Hui-Ling Niu, Shigui Ruan. On the existence of axisymmetric traveling fronts in Lotka-Volterra competition-diffusion systems in ℝ3. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1111-1144. doi: 10.3934/dcdsb.2017055
References:
[1]

E. O. AlcahraniF. A. Davidson and N. Dodds, Travelling waves in near-degenerate bistable competition models, Math. Model. Nat. Phenom., 5 (2010), 13-35. doi: 10.1051/mmnp/20105502. Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. Math.,, 30 (1978), 33-76. doi: 10.1016/0001-8708(78)90130-5. Google Scholar

[3]

A. Bonnet and F. Hamel, Existence of nonplanar solutions of a simple model of premixed Bunsen flames, SIAM J. Math. Anal., 31 (1999), 80-118. doi: 10.1137/S0036141097316391. Google Scholar

[4]

P. K. Brazhnik and J. J. Tyson, On traveling wave solutions of Fisher's equation in two spatial dimensions, SIAM J. Appl. Math., 60 (1999), 371-391. doi: 10.1137/S0036139997325497. Google Scholar

[5]

Z.-H. Bu and Z.-C. Wang, Curved fronts of monostable reaction-advection-diffusion equations in space-time periodic media, Commun. Pure Appl. Anal., 15 (2016), 139-160. doi: 10.3934/cpaa.2016.15.139. Google Scholar

[6]

G. Chapuisat, Existence and nonexistence of curved front solution of a biological equation, J. Differential Equations, 236 (2007), 237-279. doi: 10.1016/j.jde.2007.01.021. Google Scholar

[7]

X. ChenJ.-S. GuoF. HamelH. Ninomiya and J.-M. Roquejoffre, Traveling waves with paraboloid like interfaces for balanced bistable dynamics, Ann. Inst. H. Poincaré Anal. Linéaire, 24 (2007), 369-393. doi: 10.1016/j.anihpc.2006.03.012. Google Scholar

[8]

C. Conley and R. Gardner, An application of the generalized Morse index to travelling wave solutions of a competitive reaction-diffusion model, Indiana Univ. Math. J., 33 (1984), 319-343. doi: 10.1512/iumj.1984.33.33018. Google Scholar

[9]

D. Daners and P. K. McLeod, Abstract Evolution Equations, Periodic Problems and Applications, Pitman Res. Notes Math. Ser. 279, Longman Scientific and Technical, Harlow, 1992.Google Scholar

[10]

M. El SmailyF. Hamel and R. Huang, Two-dimensional curved fronts in a periodic shear flow, Nonlinear Analysis TMA, 74 (2011), 6469-6486. doi: 10.1016/j.na.2011.06.030. Google Scholar

[11]

P. C. Fife, Dynamics of Internal Layers and Diffusive Interfaces, CBMS-NSF Regional Conference, Series in Applied Mathematics, 53, 1988.Google Scholar

[12]

S. A. Gardner, Existence and stability of travelling wave solutions of competition model: A degree theoretical approach, J. Differential Equations, 44 (1982), 343-364. doi: 10.1016/0022-0396(82)90001-8. Google Scholar

[13]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 2001.Google Scholar

[14]

C. Gui, Symmetry of traveling wave solutions to the Allen-Cahn equation in ℝ2, Arch. Rational Mech. Anal., 203 (2012), 1037-1065. doi: 10.1007/s00205-011-0480-5. Google Scholar

[15]

J.-S. Guo and Y.-C. Lin, The sign of the wave speed for the Lotka-Volterra competition-diffusion system, Comm. Pure Appl. Anal., 12 (2013), 2083-2090. doi: 10.3934/cpaa.2013.12.2083. Google Scholar

[16]

J.-S. Guo and C.-H. Wu, Recent developments on wave propagation in 2-species competition systems, Discrete Contin. Dynam. Syst.-B, 17 (2012), 2713-2724. doi: 10.3934/dcdsb.2012.17.2713. Google Scholar

[17]

J.-S. Guo and C.-H. Wu, Wave propagation for a two-component lattice dynamical system arising in strong competition models, J. Differential Equations, 250 (2011), 3504-3533. doi: 10.1016/j.jde.2010.12.004. Google Scholar

[18]

F. Hamel and R. Monneau, Solutions of semilinear elliptic equations in ℝN with conicalshaped level sets, Comm. Partial Differential Equations, 25 (2000), 769-819. doi: 10.1080/03605300008821532. Google Scholar

[19]

F. HamelR. Monneau and J.-M. Roquejoffre, Stability of travelling waves in a model for conical flames in two space dimensions, Ann. Sci. Ecole Norm. Sup., 37 (2004), 469-506. doi: 10.1016/j.ansens.2004.03.001. Google Scholar

[20]

F. HamelR. Monneau and J.-M. Roquejoffre, Existence and qualitative properties of multidimensional conical bistable fronts, Discrete Contin. Dynam. Syst., 13 (2005), 1069-1096. doi: 10.3934/dcds.2005.13.1069. Google Scholar

[21]

F. HamelR. Monneau and J.-M. Roquejoffre, Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Discrete Contin. Dynam. Syst., 14 (2006), 75-92. Google Scholar

[22]

F. Hamel and N. Nadirashvili, Travelling fronts and entire solutions of the Fisher-KPP equation in ℝN, Arch. Rational Mech. Anal., 157 (2001), 91-163. doi: 10.1007/PL00004238. Google Scholar

[23]

F. Hamel and J.-M. Roquejoffre, Heteroclinic connections for multidimensional bistable reaction-diffusion equations, Discrete Contin. Dynam. Syst.-S, 4 (2011), 101-123. doi: 10.3934/dcdss.2011.4.101. Google Scholar

[24]

M. Haragus and A. Scheel, A bifurcation approach to non-planar traveling waves in reactiondiffusion systems, GAMM-Mitt., 30 (2007), 75-95. doi: 10.1002/gamm.200790012. Google Scholar

[25]

M. Haragus and A. Scheel, Almost planar waves in anisotropic media, Comm. Partial Differential Equations, 31 (2006), 791-815. doi: 10.1080/03605300500361420. Google Scholar

[26]

M. Haragus and A. Scheel, Corner defects in almost planar interface propagation, Ann. Inst. H. Poincaré Anal. Linéaire, 23 (2006), 283-329. doi: 10.1016/j.anihpc.2005.03.003. Google Scholar

[27]

R. Huang, Stability of travelling fronts of the Fisher-KPP equation in ℝN, NoDEA Nonlinear Differential Equations Appl., 15 (2008), 599-622. doi: 10.1007/s00030-008-7041-0. Google Scholar

[28]

Y. Kan-on, Parameter dependence of propagation speed of travelling waves for competition-diffusion equations, SIAM J. Math. Anal., 26 (1995), 340-363. doi: 10.1137/S0036141093244556. Google Scholar

[29]

Y. Kan-on, Existence of standing waves for competition-diffusion equations, Japan J. Indust. Appl. Math., 13 (1996), 117-133. doi: 10.1007/BF03167302. Google Scholar

[30]

Y. Kan-on, Instability of stationary solutions for a Lotka-Volterra competition model with diffusion, J. Math. Anal. Appl., 208 (1997), 158-170. doi: 10.1006/jmaa.1997.5309. Google Scholar

[31]

Y. Kan-on and Q. Fang, Stability of monotone travelling waves for competition-diffusion equations, Japan J. Indust. Appl. Math., 13 (1996), 343-349. doi: 10.1007/BF03167252. Google Scholar

[32]

Y. Kurokawa and M. Taniguchi, Multi-dimensional pyramidal travelling fronts in the AllenCahn equations, Proc. Royal Soc. Edinburgh Sect. A: Math., 14 (2011), 1031-1054. doi: 10.1017/S0308210510001253. Google Scholar

[33]

W.-T. LiG. Lin and S. Ruan, Existence of travelling wave solutions in delayed reactiondiffusion systems with applications to diffusion-competition systems, Nonlinearity, 19 (2006), 1253-1273. doi: 10.1088/0951-7715/19/6/003. Google Scholar

[34]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1-40. doi: 10.1002/cpa.20154. Google Scholar

[35]

G. Lin and W.-T. Li, Bistable wavefronts in a diffusive and competitive Lotka-Volterra type system with nonlocal delays, J. Differential Equations, 244 (2008), 487-513. doi: 10.1016/j.jde.2007.10.019. Google Scholar

[36]

R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44. doi: 10.2307/2001590. Google Scholar

[37]

Y. Morita and H. Ninomiya, Monostable-type traveling waves of bistable reaction-diffusion equations in the multi-dimensional space, Bull. Inst. Math. Acad. Sinica, 3 (2008), 567-584. Google Scholar

[38]

Y. Morita and K. Tachibana, An entire solution to the Lotka-Volterra competition-diffusion equations, SIAM J. Math. Anal., 40 (2009), 2217-2240. doi: 10.1137/080723715. Google Scholar

[39]

W.-M. Ni and M. Taniguchi, Traveling fronts of pyramidal shapes in competition-diffusion systems, Netw. Heterog. Media, 8 (2013), 379-395. doi: 10.3934/nhm.2013.8.379. Google Scholar

[40]

H. Ninomiya and M. Taniguchi, Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J. Differential Equations, 213 (2005), 204-233. doi: 10.1016/j.jde.2004.06.011. Google Scholar

[41]

H. Ninomiya and M. Taniguchi, Global stability of traveling curved fronts in the Allen-Cahn equations, Discrete Contin. Dynam. Syst., 15 (2006), 819-832. doi: 10.3934/dcds.2006.15.819. Google Scholar

[42]

M. del PinoM. Kowalczyk and J. Wei, A counterexample to a conjecture by De Giorgi in large dimensions, C. R. Math. Acad. Sci. Paris, 346 (2008), 1261-1266. doi: 10.1016/j.crma.2008.10.010. Google Scholar

[43]

M. del PinoM. Kowalczyk and J. Wei, Traveling waves with multiple and nonconvex fronts for a bistable semilinear parabolic equation, Comm. Pure Appl. Math., 66 (2013), 481-547. doi: 10.1002/cpa.21438. Google Scholar

[44]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, PrenticeHall, Inc. , Englewood Cliffs, N. J. , 1967. 1144Google Scholar

[45]

W.-J. ShengW.-T. Li and Z.-C. Wang, Periodic pyramidal traveling fronts of bistable reaction-diffusion equations with time-periodic nonlinearity, J. Differential Equations, 252 (2012), 2388-2424. doi: 10.1016/j.jde.2011.09.01. Google Scholar

[46]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, Vol. 41, Amer. Math. Soc. , Providence, RI, 1995.Google Scholar

[47]

M. Taniguchi, Traveling fronts of pyramidal shapes in the Allen-Cahn equations, SIAM J. Math. Anal., 39 (2007), 319-344. doi: 10.1137/060661788. Google Scholar

[48]

M. Taniguchi, The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations, J. Differential Euqations, 246 (2009), 2103-2130. doi: 10.1016/j.jde.2008.06.037. Google Scholar

[49]

M. Taniguchi, Multi-Dimensional traveling fronts in bistable reaction-diffusion equations, Discrete Contin. Dynam. Syst., 32 (2012), 1011-1046. doi: 10.3934/dcds.2012.32.1011. Google Scholar

[50]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differential Equations, 195 (2003), 430-470. doi: 10.1016/S0022-0396(03)00175-X. Google Scholar

[51]

A. I. Volpert, V. A. Volpert and V. A. Volpert, Travelling Wave Solutions of Parabolic Systems, Translations of Mathematical Monographs, Vol. 140, Amer. Math. Soc. , Providence, RI, 1994.Google Scholar

[52]

Z.-C. Wang, Traveling curved fronts in monotone bistable systems, Discrete Contin. Dynam. Syst., 32 (2012), 2339-2374. doi: 10.3934/dcds.2012.32.2339. Google Scholar

[53]

Z.-C. Wang, Cylindrically symmetric traveling fronts in periodic reaction-diffusion equation with bistable nonlinearity, Proc. Royal Soc. Edinburgh Sect. A: Math., 145 (2015), 1053-1090. doi: 10.1017/S0308210515000268. Google Scholar

[54]

Z.-C. Wang and Z.-H. Bu, Nonplanar traveling fronts in reaction-diffusion equations with combustion and degenerate Fisher-KPP nonlinearities, J. Differential Equations, 260 (2016), 6405-6450. doi: 10.1016/j.jde.2015.12.045. Google Scholar

[55]

Z.-C. WangW.-T. Li and S. Ruan, Existence, uniqueness and stability of pyramidal traveling fronts in reaction-diffusion systems, Sci. China Math., 59 (2016), 1868-1908. doi: 10.1007/s11425-016-0015-x. Google Scholar

[56]

Z.-C. Wang and J. Wu, Periodic traveling curved fronts in reaction-diffusion equation with bistable time-periodic nonlinearity, J. Differential Equations, 250 (2011), 3196-3229. doi: 10.1016/j.jde.2011.01.017. Google Scholar

[57]

T. P. WitelskiK. Ono and T. J. Kaper, On axisymmetric traveling waves and radial solutions of semi-linear elliptic equations, Nat. Resource Model., 13 (2000), 339-388. doi: 10.1111/j.1939-7445.2000.tb00039.x. Google Scholar

[58]

G. Zhao and S. Ruan, Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka-Volterra competition system with diffusion, J. Math. Pures Appl., 95 (2011), 627-671. doi: 10.1016/j.matpur.2010.11.005. Google Scholar

show all references

References:
[1]

E. O. AlcahraniF. A. Davidson and N. Dodds, Travelling waves in near-degenerate bistable competition models, Math. Model. Nat. Phenom., 5 (2010), 13-35. doi: 10.1051/mmnp/20105502. Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. Math.,, 30 (1978), 33-76. doi: 10.1016/0001-8708(78)90130-5. Google Scholar

[3]

A. Bonnet and F. Hamel, Existence of nonplanar solutions of a simple model of premixed Bunsen flames, SIAM J. Math. Anal., 31 (1999), 80-118. doi: 10.1137/S0036141097316391. Google Scholar

[4]

P. K. Brazhnik and J. J. Tyson, On traveling wave solutions of Fisher's equation in two spatial dimensions, SIAM J. Appl. Math., 60 (1999), 371-391. doi: 10.1137/S0036139997325497. Google Scholar

[5]

Z.-H. Bu and Z.-C. Wang, Curved fronts of monostable reaction-advection-diffusion equations in space-time periodic media, Commun. Pure Appl. Anal., 15 (2016), 139-160. doi: 10.3934/cpaa.2016.15.139. Google Scholar

[6]

G. Chapuisat, Existence and nonexistence of curved front solution of a biological equation, J. Differential Equations, 236 (2007), 237-279. doi: 10.1016/j.jde.2007.01.021. Google Scholar

[7]

X. ChenJ.-S. GuoF. HamelH. Ninomiya and J.-M. Roquejoffre, Traveling waves with paraboloid like interfaces for balanced bistable dynamics, Ann. Inst. H. Poincaré Anal. Linéaire, 24 (2007), 369-393. doi: 10.1016/j.anihpc.2006.03.012. Google Scholar

[8]

C. Conley and R. Gardner, An application of the generalized Morse index to travelling wave solutions of a competitive reaction-diffusion model, Indiana Univ. Math. J., 33 (1984), 319-343. doi: 10.1512/iumj.1984.33.33018. Google Scholar

[9]

D. Daners and P. K. McLeod, Abstract Evolution Equations, Periodic Problems and Applications, Pitman Res. Notes Math. Ser. 279, Longman Scientific and Technical, Harlow, 1992.Google Scholar

[10]

M. El SmailyF. Hamel and R. Huang, Two-dimensional curved fronts in a periodic shear flow, Nonlinear Analysis TMA, 74 (2011), 6469-6486. doi: 10.1016/j.na.2011.06.030. Google Scholar

[11]

P. C. Fife, Dynamics of Internal Layers and Diffusive Interfaces, CBMS-NSF Regional Conference, Series in Applied Mathematics, 53, 1988.Google Scholar

[12]

S. A. Gardner, Existence and stability of travelling wave solutions of competition model: A degree theoretical approach, J. Differential Equations, 44 (1982), 343-364. doi: 10.1016/0022-0396(82)90001-8. Google Scholar

[13]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 2001.Google Scholar

[14]

C. Gui, Symmetry of traveling wave solutions to the Allen-Cahn equation in ℝ2, Arch. Rational Mech. Anal., 203 (2012), 1037-1065. doi: 10.1007/s00205-011-0480-5. Google Scholar

[15]

J.-S. Guo and Y.-C. Lin, The sign of the wave speed for the Lotka-Volterra competition-diffusion system, Comm. Pure Appl. Anal., 12 (2013), 2083-2090. doi: 10.3934/cpaa.2013.12.2083. Google Scholar

[16]

J.-S. Guo and C.-H. Wu, Recent developments on wave propagation in 2-species competition systems, Discrete Contin. Dynam. Syst.-B, 17 (2012), 2713-2724. doi: 10.3934/dcdsb.2012.17.2713. Google Scholar

[17]

J.-S. Guo and C.-H. Wu, Wave propagation for a two-component lattice dynamical system arising in strong competition models, J. Differential Equations, 250 (2011), 3504-3533. doi: 10.1016/j.jde.2010.12.004. Google Scholar

[18]

F. Hamel and R. Monneau, Solutions of semilinear elliptic equations in ℝN with conicalshaped level sets, Comm. Partial Differential Equations, 25 (2000), 769-819. doi: 10.1080/03605300008821532. Google Scholar

[19]

F. HamelR. Monneau and J.-M. Roquejoffre, Stability of travelling waves in a model for conical flames in two space dimensions, Ann. Sci. Ecole Norm. Sup., 37 (2004), 469-506. doi: 10.1016/j.ansens.2004.03.001. Google Scholar

[20]

F. HamelR. Monneau and J.-M. Roquejoffre, Existence and qualitative properties of multidimensional conical bistable fronts, Discrete Contin. Dynam. Syst., 13 (2005), 1069-1096. doi: 10.3934/dcds.2005.13.1069. Google Scholar

[21]

F. HamelR. Monneau and J.-M. Roquejoffre, Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Discrete Contin. Dynam. Syst., 14 (2006), 75-92. Google Scholar

[22]

F. Hamel and N. Nadirashvili, Travelling fronts and entire solutions of the Fisher-KPP equation in ℝN, Arch. Rational Mech. Anal., 157 (2001), 91-163. doi: 10.1007/PL00004238. Google Scholar

[23]

F. Hamel and J.-M. Roquejoffre, Heteroclinic connections for multidimensional bistable reaction-diffusion equations, Discrete Contin. Dynam. Syst.-S, 4 (2011), 101-123. doi: 10.3934/dcdss.2011.4.101. Google Scholar

[24]

M. Haragus and A. Scheel, A bifurcation approach to non-planar traveling waves in reactiondiffusion systems, GAMM-Mitt., 30 (2007), 75-95. doi: 10.1002/gamm.200790012. Google Scholar

[25]

M. Haragus and A. Scheel, Almost planar waves in anisotropic media, Comm. Partial Differential Equations, 31 (2006), 791-815. doi: 10.1080/03605300500361420. Google Scholar

[26]

M. Haragus and A. Scheel, Corner defects in almost planar interface propagation, Ann. Inst. H. Poincaré Anal. Linéaire, 23 (2006), 283-329. doi: 10.1016/j.anihpc.2005.03.003. Google Scholar

[27]

R. Huang, Stability of travelling fronts of the Fisher-KPP equation in ℝN, NoDEA Nonlinear Differential Equations Appl., 15 (2008), 599-622. doi: 10.1007/s00030-008-7041-0. Google Scholar

[28]

Y. Kan-on, Parameter dependence of propagation speed of travelling waves for competition-diffusion equations, SIAM J. Math. Anal., 26 (1995), 340-363. doi: 10.1137/S0036141093244556. Google Scholar

[29]

Y. Kan-on, Existence of standing waves for competition-diffusion equations, Japan J. Indust. Appl. Math., 13 (1996), 117-133. doi: 10.1007/BF03167302. Google Scholar

[30]

Y. Kan-on, Instability of stationary solutions for a Lotka-Volterra competition model with diffusion, J. Math. Anal. Appl., 208 (1997), 158-170. doi: 10.1006/jmaa.1997.5309. Google Scholar

[31]

Y. Kan-on and Q. Fang, Stability of monotone travelling waves for competition-diffusion equations, Japan J. Indust. Appl. Math., 13 (1996), 343-349. doi: 10.1007/BF03167252. Google Scholar

[32]

Y. Kurokawa and M. Taniguchi, Multi-dimensional pyramidal travelling fronts in the AllenCahn equations, Proc. Royal Soc. Edinburgh Sect. A: Math., 14 (2011), 1031-1054. doi: 10.1017/S0308210510001253. Google Scholar

[33]

W.-T. LiG. Lin and S. Ruan, Existence of travelling wave solutions in delayed reactiondiffusion systems with applications to diffusion-competition systems, Nonlinearity, 19 (2006), 1253-1273. doi: 10.1088/0951-7715/19/6/003. Google Scholar

[34]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1-40. doi: 10.1002/cpa.20154. Google Scholar

[35]

G. Lin and W.-T. Li, Bistable wavefronts in a diffusive and competitive Lotka-Volterra type system with nonlocal delays, J. Differential Equations, 244 (2008), 487-513. doi: 10.1016/j.jde.2007.10.019. Google Scholar

[36]

R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44. doi: 10.2307/2001590. Google Scholar

[37]

Y. Morita and H. Ninomiya, Monostable-type traveling waves of bistable reaction-diffusion equations in the multi-dimensional space, Bull. Inst. Math. Acad. Sinica, 3 (2008), 567-584. Google Scholar

[38]

Y. Morita and K. Tachibana, An entire solution to the Lotka-Volterra competition-diffusion equations, SIAM J. Math. Anal., 40 (2009), 2217-2240. doi: 10.1137/080723715. Google Scholar

[39]

W.-M. Ni and M. Taniguchi, Traveling fronts of pyramidal shapes in competition-diffusion systems, Netw. Heterog. Media, 8 (2013), 379-395. doi: 10.3934/nhm.2013.8.379. Google Scholar

[40]

H. Ninomiya and M. Taniguchi, Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J. Differential Equations, 213 (2005), 204-233. doi: 10.1016/j.jde.2004.06.011. Google Scholar

[41]

H. Ninomiya and M. Taniguchi, Global stability of traveling curved fronts in the Allen-Cahn equations, Discrete Contin. Dynam. Syst., 15 (2006), 819-832. doi: 10.3934/dcds.2006.15.819. Google Scholar

[42]

M. del PinoM. Kowalczyk and J. Wei, A counterexample to a conjecture by De Giorgi in large dimensions, C. R. Math. Acad. Sci. Paris, 346 (2008), 1261-1266. doi: 10.1016/j.crma.2008.10.010. Google Scholar

[43]

M. del PinoM. Kowalczyk and J. Wei, Traveling waves with multiple and nonconvex fronts for a bistable semilinear parabolic equation, Comm. Pure Appl. Math., 66 (2013), 481-547. doi: 10.1002/cpa.21438. Google Scholar

[44]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, PrenticeHall, Inc. , Englewood Cliffs, N. J. , 1967. 1144Google Scholar

[45]

W.-J. ShengW.-T. Li and Z.-C. Wang, Periodic pyramidal traveling fronts of bistable reaction-diffusion equations with time-periodic nonlinearity, J. Differential Equations, 252 (2012), 2388-2424. doi: 10.1016/j.jde.2011.09.01. Google Scholar

[46]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, Vol. 41, Amer. Math. Soc. , Providence, RI, 1995.Google Scholar

[47]

M. Taniguchi, Traveling fronts of pyramidal shapes in the Allen-Cahn equations, SIAM J. Math. Anal., 39 (2007), 319-344. doi: 10.1137/060661788. Google Scholar

[48]

M. Taniguchi, The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations, J. Differential Euqations, 246 (2009), 2103-2130. doi: 10.1016/j.jde.2008.06.037. Google Scholar

[49]

M. Taniguchi, Multi-Dimensional traveling fronts in bistable reaction-diffusion equations, Discrete Contin. Dynam. Syst., 32 (2012), 1011-1046. doi: 10.3934/dcds.2012.32.1011. Google Scholar

[50]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differential Equations, 195 (2003), 430-470. doi: 10.1016/S0022-0396(03)00175-X. Google Scholar

[51]

A. I. Volpert, V. A. Volpert and V. A. Volpert, Travelling Wave Solutions of Parabolic Systems, Translations of Mathematical Monographs, Vol. 140, Amer. Math. Soc. , Providence, RI, 1994.Google Scholar

[52]

Z.-C. Wang, Traveling curved fronts in monotone bistable systems, Discrete Contin. Dynam. Syst., 32 (2012), 2339-2374. doi: 10.3934/dcds.2012.32.2339. Google Scholar

[53]

Z.-C. Wang, Cylindrically symmetric traveling fronts in periodic reaction-diffusion equation with bistable nonlinearity, Proc. Royal Soc. Edinburgh Sect. A: Math., 145 (2015), 1053-1090. doi: 10.1017/S0308210515000268. Google Scholar

[54]

Z.-C. Wang and Z.-H. Bu, Nonplanar traveling fronts in reaction-diffusion equations with combustion and degenerate Fisher-KPP nonlinearities, J. Differential Equations, 260 (2016), 6405-6450. doi: 10.1016/j.jde.2015.12.045. Google Scholar

[55]

Z.-C. WangW.-T. Li and S. Ruan, Existence, uniqueness and stability of pyramidal traveling fronts in reaction-diffusion systems, Sci. China Math., 59 (2016), 1868-1908. doi: 10.1007/s11425-016-0015-x. Google Scholar

[56]

Z.-C. Wang and J. Wu, Periodic traveling curved fronts in reaction-diffusion equation with bistable time-periodic nonlinearity, J. Differential Equations, 250 (2011), 3196-3229. doi: 10.1016/j.jde.2011.01.017. Google Scholar

[57]

T. P. WitelskiK. Ono and T. J. Kaper, On axisymmetric traveling waves and radial solutions of semi-linear elliptic equations, Nat. Resource Model., 13 (2000), 339-388. doi: 10.1111/j.1939-7445.2000.tb00039.x. Google Scholar

[58]

G. Zhao and S. Ruan, Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka-Volterra competition system with diffusion, J. Math. Pures Appl., 95 (2011), 627-671. doi: 10.1016/j.matpur.2010.11.005. Google Scholar

[1]

Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083

[2]

Yang Wang, Xiong Li. Uniqueness of traveling front solutions for the Lotka-Volterra system in the weak competition case. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3067-3075. doi: 10.3934/dcdsb.2018300

[3]

Yuan Lou, Dongmei Xiao, Peng Zhou. Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 953-969. doi: 10.3934/dcds.2016.36.953

[4]

Qi Wang, Chunyi Gai, Jingda Yan. Qualitative analysis of a Lotka-Volterra competition system with advection. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1239-1284. doi: 10.3934/dcds.2015.35.1239

[5]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[6]

Shuling Yan, Shangjiang Guo. Dynamics of a Lotka-Volterra competition-diffusion model with stage structure and spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1559-1579. doi: 10.3934/dcdsb.2018059

[7]

Jian Fang, Jianhong Wu. Monotone traveling waves for delayed Lotka-Volterra competition systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3043-3058. doi: 10.3934/dcds.2012.32.3043

[8]

Li-Jun Du, Wan-Tong Li, Jia-Bing Wang. Invasion entire solutions in a time periodic Lotka-Volterra competition system with diffusion. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1187-1213. doi: 10.3934/mbe.2017061

[9]

Yuzo Hosono. Traveling waves for the Lotka-Volterra predator-prey system without diffusion of the predator. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 161-171. doi: 10.3934/dcdsb.2015.20.161

[10]

Qi Wang, Yang Song, Lingjie Shao. Boundedness and persistence of populations in advective Lotka-Volterra competition system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2245-2263. doi: 10.3934/dcdsb.2018195

[11]

Anthony W. Leung, Xiaojie Hou, Wei Feng. Traveling wave solutions for Lotka-Volterra system re-visited. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 171-196. doi: 10.3934/dcdsb.2011.15.171

[12]

Daozhou Gao, Xing Liang. A competition-diffusion system with a refuge. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 435-454. doi: 10.3934/dcdsb.2007.8.435

[13]

Yuzo Hosono. Traveling waves for a diffusive Lotka-Volterra competition model I: singular perturbations. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 79-95. doi: 10.3934/dcdsb.2003.3.79

[14]

Chiun-Chuan Chen, Li-Chang Hung. Nonexistence of traveling wave solutions, exact and semi-exact traveling wave solutions for diffusive Lotka-Volterra systems of three competing species. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1451-1469. doi: 10.3934/cpaa.2016.15.1451

[15]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. On a limiting system in the Lotka--Volterra competition with cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 435-458. doi: 10.3934/dcds.2004.10.435

[16]

Yukio Kan-On. Bifurcation structures of positive stationary solutions for a Lotka-Volterra competition model with diffusion II: Global structure. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 135-148. doi: 10.3934/dcds.2006.14.135

[17]

Yuan Lou, Salomé Martínez, Wei-Ming Ni. On $3\times 3$ Lotka-Volterra competition systems with cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 175-190. doi: 10.3934/dcds.2000.6.175

[18]

Qi Wang. On steady state of some Lotka-Volterra competition-diffusion-advection model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019193

[19]

De Tang. Dynamical behavior for a Lotka-Volterra weak competition system in advective homogeneous environment. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4913-4928. doi: 10.3934/dcdsb.2019037

[20]

Zhaohai Ma, Rong Yuan, Yang Wang, Xin Wu. Multidimensional stability of planar traveling waves for the delayed nonlocal dispersal competitive Lotka-Volterra system. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2069-2092. doi: 10.3934/cpaa.2019093

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (24)
  • HTML views (5)
  • Cited by (0)

Other articles
by authors

[Back to Top]