This paper is concerned with the following two-species Lotka-Volterra competition-diffusion system in the three-dimensional spatial space
where
$\mathbf{\Psi}(\mathbf{x}^\prime,x_3+st)=\left(\Phi_1(\mathbf{x}^\prime,x_3+st),\Phi_2(\mathbf{x}^\prime, x_3+st)\right)$
in
Citation: |
[1] |
E. O. Alcahrani, F. A. Davidson and N. Dodds, Travelling waves in near-degenerate bistable competition models, Math. Model. Nat. Phenom., 5 (2010), 13-35.
doi: 10.1051/mmnp/20105502.![]() ![]() ![]() |
[2] |
D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. Math.,, 30 (1978), 33-76.
doi: 10.1016/0001-8708(78)90130-5.![]() ![]() ![]() |
[3] |
A. Bonnet and F. Hamel, Existence of nonplanar solutions of a simple model of premixed Bunsen flames, SIAM J. Math. Anal., 31 (1999), 80-118.
doi: 10.1137/S0036141097316391.![]() ![]() ![]() |
[4] |
P. K. Brazhnik and J. J. Tyson, On traveling wave solutions of Fisher's equation in two spatial dimensions, SIAM J. Appl. Math., 60 (1999), 371-391.
doi: 10.1137/S0036139997325497.![]() ![]() ![]() |
[5] |
Z.-H. Bu and Z.-C. Wang, Curved fronts of monostable reaction-advection-diffusion equations in space-time periodic media, Commun. Pure Appl. Anal., 15 (2016), 139-160.
doi: 10.3934/cpaa.2016.15.139.![]() ![]() ![]() |
[6] |
G. Chapuisat, Existence and nonexistence of curved front solution of a biological equation, J. Differential Equations, 236 (2007), 237-279.
doi: 10.1016/j.jde.2007.01.021.![]() ![]() ![]() |
[7] |
X. Chen, J.-S. Guo, F. Hamel, H. Ninomiya and J.-M. Roquejoffre, Traveling waves with paraboloid like interfaces for balanced bistable dynamics, Ann. Inst. H. Poincaré Anal. Linéaire, 24 (2007), 369-393.
doi: 10.1016/j.anihpc.2006.03.012.![]() ![]() ![]() |
[8] |
C. Conley and R. Gardner, An application of the generalized Morse index to travelling wave solutions of a competitive reaction-diffusion model, Indiana Univ. Math. J., 33 (1984), 319-343.
doi: 10.1512/iumj.1984.33.33018.![]() ![]() ![]() |
[9] |
D. Daners and P. K. McLeod, Abstract Evolution Equations, Periodic Problems and Applications, Pitman Res. Notes Math. Ser. 279, Longman Scientific and Technical, Harlow, 1992.
![]() |
[10] |
M. El Smaily, F. Hamel and R. Huang, Two-dimensional curved fronts in a periodic shear flow, Nonlinear Analysis TMA, 74 (2011), 6469-6486.
doi: 10.1016/j.na.2011.06.030.![]() ![]() ![]() |
[11] |
P. C. Fife, Dynamics of Internal Layers and Diffusive Interfaces, CBMS-NSF Regional Conference, Series in Applied Mathematics, 53, 1988.
![]() |
[12] |
S. A. Gardner, Existence and stability of travelling wave solutions of competition model: A degree theoretical approach, J. Differential Equations, 44 (1982), 343-364.
doi: 10.1016/0022-0396(82)90001-8.![]() ![]() ![]() |
[13] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 2001.
![]() |
[14] |
C. Gui, Symmetry of traveling wave solutions to the Allen-Cahn equation in ℝ2, Arch. Rational Mech. Anal., 203 (2012), 1037-1065.
doi: 10.1007/s00205-011-0480-5.![]() ![]() ![]() |
[15] |
J.-S. Guo and Y.-C. Lin, The sign of the wave speed for the Lotka-Volterra competition-diffusion system, Comm. Pure Appl. Anal., 12 (2013), 2083-2090.
doi: 10.3934/cpaa.2013.12.2083.![]() ![]() ![]() |
[16] |
J.-S. Guo and C.-H. Wu, Recent developments on wave propagation in 2-species competition systems, Discrete Contin. Dynam. Syst.-B, 17 (2012), 2713-2724.
doi: 10.3934/dcdsb.2012.17.2713.![]() ![]() ![]() |
[17] |
J.-S. Guo and C.-H. Wu, Wave propagation for a two-component lattice dynamical system arising in strong competition models, J. Differential Equations, 250 (2011), 3504-3533.
doi: 10.1016/j.jde.2010.12.004.![]() ![]() ![]() |
[18] |
F. Hamel and R. Monneau, Solutions of semilinear elliptic equations in ℝN with conicalshaped level sets, Comm. Partial Differential Equations, 25 (2000), 769-819.
doi: 10.1080/03605300008821532.![]() ![]() ![]() |
[19] |
F. Hamel, R. Monneau and J.-M. Roquejoffre, Stability of travelling waves in a model for conical flames in two space dimensions, Ann. Sci. Ecole Norm. Sup., 37 (2004), 469-506.
doi: 10.1016/j.ansens.2004.03.001.![]() ![]() ![]() |
[20] |
F. Hamel, R. Monneau and J.-M. Roquejoffre, Existence and qualitative properties of multidimensional conical bistable fronts, Discrete Contin. Dynam. Syst., 13 (2005), 1069-1096.
doi: 10.3934/dcds.2005.13.1069.![]() ![]() ![]() |
[21] |
F. Hamel, R. Monneau and J.-M. Roquejoffre, Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Discrete Contin. Dynam. Syst., 14 (2006), 75-92.
![]() ![]() |
[22] |
F. Hamel and N. Nadirashvili, Travelling fronts and entire solutions of the Fisher-KPP equation in ℝN, Arch. Rational Mech. Anal., 157 (2001), 91-163.
doi: 10.1007/PL00004238.![]() ![]() ![]() |
[23] |
F. Hamel and J.-M. Roquejoffre, Heteroclinic connections for multidimensional bistable reaction-diffusion equations, Discrete Contin. Dynam. Syst.-S, 4 (2011), 101-123.
doi: 10.3934/dcdss.2011.4.101.![]() ![]() ![]() |
[24] |
M. Haragus and A. Scheel, A bifurcation approach to non-planar traveling waves in reactiondiffusion systems, GAMM-Mitt., 30 (2007), 75-95.
doi: 10.1002/gamm.200790012.![]() ![]() ![]() |
[25] |
M. Haragus and A. Scheel, Almost planar waves in anisotropic media, Comm. Partial Differential Equations, 31 (2006), 791-815.
doi: 10.1080/03605300500361420.![]() ![]() ![]() |
[26] |
M. Haragus and A. Scheel, Corner defects in almost planar interface propagation, Ann. Inst. H. Poincaré Anal. Linéaire, 23 (2006), 283-329.
doi: 10.1016/j.anihpc.2005.03.003.![]() ![]() ![]() |
[27] |
R. Huang, Stability of travelling fronts of the Fisher-KPP equation in ℝN, NoDEA Nonlinear Differential Equations Appl., 15 (2008), 599-622.
doi: 10.1007/s00030-008-7041-0.![]() ![]() ![]() |
[28] |
Y. Kan-on, Parameter dependence of propagation speed of travelling waves for competition-diffusion equations, SIAM J. Math. Anal., 26 (1995), 340-363.
doi: 10.1137/S0036141093244556.![]() ![]() ![]() |
[29] |
Y. Kan-on, Existence of standing waves for competition-diffusion equations, Japan J. Indust. Appl. Math., 13 (1996), 117-133.
doi: 10.1007/BF03167302.![]() ![]() ![]() |
[30] |
Y. Kan-on, Instability of stationary solutions for a Lotka-Volterra competition model with diffusion, J. Math. Anal. Appl., 208 (1997), 158-170.
doi: 10.1006/jmaa.1997.5309.![]() ![]() ![]() |
[31] |
Y. Kan-on and Q. Fang, Stability of monotone travelling waves for competition-diffusion equations, Japan J. Indust. Appl. Math., 13 (1996), 343-349.
doi: 10.1007/BF03167252.![]() ![]() ![]() |
[32] |
Y. Kurokawa and M. Taniguchi, Multi-dimensional pyramidal travelling fronts in the AllenCahn equations, Proc. Royal Soc. Edinburgh Sect. A: Math., 14 (2011), 1031-1054.
doi: 10.1017/S0308210510001253.![]() ![]() ![]() |
[33] |
W.-T. Li, G. Lin and S. Ruan, Existence of travelling wave solutions in delayed reactiondiffusion systems with applications to diffusion-competition systems, Nonlinearity, 19 (2006), 1253-1273.
doi: 10.1088/0951-7715/19/6/003.![]() ![]() ![]() |
[34] |
X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1-40.
doi: 10.1002/cpa.20154.![]() ![]() ![]() |
[35] |
G. Lin and W.-T. Li, Bistable wavefronts in a diffusive and competitive Lotka-Volterra type system with nonlocal delays, J. Differential Equations, 244 (2008), 487-513.
doi: 10.1016/j.jde.2007.10.019.![]() ![]() ![]() |
[36] |
R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.
doi: 10.2307/2001590.![]() ![]() ![]() |
[37] |
Y. Morita and H. Ninomiya, Monostable-type traveling waves of bistable reaction-diffusion equations in the multi-dimensional space, Bull. Inst. Math. Acad. Sinica, 3 (2008), 567-584.
![]() ![]() |
[38] |
Y. Morita and K. Tachibana, An entire solution to the Lotka-Volterra competition-diffusion equations, SIAM J. Math. Anal., 40 (2009), 2217-2240.
doi: 10.1137/080723715.![]() ![]() ![]() |
[39] |
W.-M. Ni and M. Taniguchi, Traveling fronts of pyramidal shapes in competition-diffusion systems, Netw. Heterog. Media, 8 (2013), 379-395.
doi: 10.3934/nhm.2013.8.379.![]() ![]() ![]() |
[40] |
H. Ninomiya and M. Taniguchi, Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J. Differential Equations, 213 (2005), 204-233.
doi: 10.1016/j.jde.2004.06.011.![]() ![]() ![]() |
[41] |
H. Ninomiya and M. Taniguchi, Global stability of traveling curved fronts in the Allen-Cahn equations, Discrete Contin. Dynam. Syst., 15 (2006), 819-832.
doi: 10.3934/dcds.2006.15.819.![]() ![]() ![]() |
[42] |
M. del Pino, M. Kowalczyk and J. Wei, A counterexample to a conjecture by De Giorgi in large dimensions, C. R. Math. Acad. Sci. Paris, 346 (2008), 1261-1266.
doi: 10.1016/j.crma.2008.10.010.![]() ![]() ![]() |
[43] |
M. del Pino, M. Kowalczyk and J. Wei, Traveling waves with multiple and nonconvex fronts for a bistable semilinear parabolic equation, Comm. Pure Appl. Math., 66 (2013), 481-547.
doi: 10.1002/cpa.21438.![]() ![]() ![]() |
[44] |
M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, PrenticeHall, Inc. , Englewood Cliffs, N. J. , 1967. 1144
![]() |
[45] |
W.-J. Sheng, W.-T. Li and Z.-C. Wang, Periodic pyramidal traveling fronts of bistable reaction-diffusion equations with time-periodic nonlinearity, J. Differential Equations, 252 (2012), 2388-2424.
doi: 10.1016/j.jde.2011.09.01.![]() ![]() ![]() |
[46] |
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, Vol. 41, Amer. Math. Soc. , Providence, RI, 1995.
![]() |
[47] |
M. Taniguchi, Traveling fronts of pyramidal shapes in the Allen-Cahn equations, SIAM J. Math. Anal., 39 (2007), 319-344.
doi: 10.1137/060661788.![]() ![]() ![]() |
[48] |
M. Taniguchi, The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations, J. Differential Euqations, 246 (2009), 2103-2130.
doi: 10.1016/j.jde.2008.06.037.![]() ![]() ![]() |
[49] |
M. Taniguchi, Multi-Dimensional traveling fronts in bistable reaction-diffusion equations, Discrete Contin. Dynam. Syst., 32 (2012), 1011-1046.
doi: 10.3934/dcds.2012.32.1011.![]() ![]() ![]() |
[50] |
H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differential Equations, 195 (2003), 430-470.
doi: 10.1016/S0022-0396(03)00175-X.![]() ![]() ![]() |
[51] |
A. I. Volpert, V. A. Volpert and V. A. Volpert, Travelling Wave Solutions of Parabolic Systems, Translations of Mathematical Monographs, Vol. 140, Amer. Math. Soc. , Providence, RI, 1994.
![]() |
[52] |
Z.-C. Wang, Traveling curved fronts in monotone bistable systems, Discrete Contin. Dynam. Syst., 32 (2012), 2339-2374.
doi: 10.3934/dcds.2012.32.2339.![]() ![]() ![]() |
[53] |
Z.-C. Wang, Cylindrically symmetric traveling fronts in periodic reaction-diffusion equation with bistable nonlinearity, Proc. Royal Soc. Edinburgh Sect. A: Math., 145 (2015), 1053-1090.
doi: 10.1017/S0308210515000268.![]() ![]() ![]() |
[54] |
Z.-C. Wang and Z.-H. Bu, Nonplanar traveling fronts in reaction-diffusion equations with combustion and degenerate Fisher-KPP nonlinearities, J. Differential Equations, 260 (2016), 6405-6450.
doi: 10.1016/j.jde.2015.12.045.![]() ![]() ![]() |
[55] |
Z.-C. Wang, W.-T. Li and S. Ruan, Existence, uniqueness and stability of pyramidal traveling fronts in reaction-diffusion systems, Sci. China Math., 59 (2016), 1868-1908.
doi: 10.1007/s11425-016-0015-x.![]() ![]() ![]() |
[56] |
Z.-C. Wang and J. Wu, Periodic traveling curved fronts in reaction-diffusion equation with bistable time-periodic nonlinearity, J. Differential Equations, 250 (2011), 3196-3229.
doi: 10.1016/j.jde.2011.01.017.![]() ![]() ![]() |
[57] |
T. P. Witelski, K. Ono and T. J. Kaper, On axisymmetric traveling waves and radial solutions of semi-linear elliptic equations, Nat. Resource Model., 13 (2000), 339-388.
doi: 10.1111/j.1939-7445.2000.tb00039.x.![]() ![]() ![]() |
[58] |
G. Zhao and S. Ruan, Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka-Volterra competition system with diffusion, J. Math. Pures Appl., 95 (2011), 627-671.
doi: 10.1016/j.matpur.2010.11.005.![]() ![]() ![]() |