Advanced Search
Article Contents
Article Contents

A general decay result for a multi-dimensional weakly damped thermoelastic system with second sound

  • * Corresponding author: Salah Drabla

    * Corresponding author: Salah Drabla 
Abstract Full Text(HTML) Related Papers Cited by
  • In this article we consider an n-dimensional system of thermoelasticity with second sound in the presence of a weak frictional damping. We establish an explicit and general decay rate result, using some properties of convex functions. Our result is obtained without imposing any restrictive growth assumption on the frictional damping term.

    Mathematics Subject Classification: 35B37, 35L55, 74D05, 93D15, 93D20.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] F. Alabau-Boussouira, Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems, Appl. Math. Optim., 51 (2005), 61-105.  doi: 10.1007/s00245.
    [2] V. I. ArnoldMathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1989. 
    [3] F. Boulanouar and S. Drabla, General boundary stabilization result of memory-type thermoelasticity with second sound, Electron. J. Diff. Equ., 2014 (2014), 1-18. 
    [4] C. Cattaneo, Sulla condizione del calore, Atti Del Semin. Matem. E Fis. Della Univ. Modena, 3 (1949), 83-101. 
    [5] C. CavalcantiM. M. DomingosV. N. Cavalcanti and I. Lasiecka, Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction, J. Differential Equations, 236 (2007), 407-459.  doi: 10.1016/j.jde.2007.02.004.
    [6] B. D. ColemanW. J. Hrusa and D. R. Owen, Stability of equilibrium for a nonlinear hyperbolic system describing heat propagation by second sound in solids, Arch. Ration. Mech. Anal., 94 (1986), 267-289.  doi: 10.1007/BF00279867.
    [7] I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equation with nonlinear boundary damping, Diff. Integral Eq., 6 (1993), 507-533. 
    [8] I. Lasiecka and D. Toundykov, Energy decay rates for the semilinear wave equation with nonlinear localized damping and source terms, Nonlinear Anal., 64 (2006), 1757-1797.  doi: 10.1016/j.na.2005.07.024.
    [10] W. J. Liu and E. Zuazua, Decay rates for dissipative wave equations, Ricerche Mat., 48 (1999), 61-75. 
    [11] J. C. Maxwell, On the Dynamical Theory of Gases, The Philosophical Transactions of the Royal Society, 157 (1867), 49-88. 
    [12] S. A. Messaoudi, Local Existence and blow up in thermoelasticity with second sound, Comm. Partial Diff. Eqns., 27 (2002), 1681-1693.  doi: 10.1081/PDE-120005852.
    [13] S. Messaoudi and A. Al-Shehri, General boundary stabilization of memory-type thermoelasticity with second sound, Z. Anal. Anwend., 31 (2012), 441-461.  doi: 10.4171/ZAA/1468.
    [14] S. A. Messaoudi and B. Madani, A general decay result for a memory-type thermoelasticity with second sound, Applicable Analysis., 93 (2014), 1663-1673.  doi: 10.1080/00036811.2013.842230.
    [15] S. A. Messaoudi and M. I. Mustafa, General energy decay rates for a weakly damped wave equation, Commun. Math. Anal., 9 (2010), 67-76. 
    [16] S. A. Messaoudi and B. Said-Houari, Exponential Stability in one-dimensional nonlinear thermoelasticity with second sound, Math. Meth. Appl. Sci., 28 (2005), 205-232.  doi: 10.1002/mma.556.
    [18] M. I. Mustafa, Boundary stabilization of memory-type thermoelasticity with second sound, Z. Angew. Math. Phys., 63 (2012), 777-792.  doi: 10.1007/s00033-011-0190-8.
    [19] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied mathematical Sciences 44, Springer-Verlag, 1983. doi: 10.1007/978-1-4612-5561-1.
    [20] Y. QinZ. Ma and X. Yang, Exponential stability for nonlinear thermoelastic equations with second sound, Nonlinear Anal. Real World Appl., 11 (2010), 2502-2513.  doi: 10.1016/j.nonrwa.2009.08.006.
    [21] R. Racke, Thermoelasticity with second sound-exponential stability in linear and nonlinear 1-d, Math. Meth. Appl. Sci., 25 (2002), 409-441.  doi: 10.1002/mma.298.
    [23] R. Racke and Y. Wang, Nonlinear well-posedness and rates of decay in thermoelasticity with second sound, J. Hyperbolic Differ. Equ., 5 (2008), 25-43.  doi: 10.1142/S021989160800143X.
    [24] M. A. Tarabek, On the existence of smooth solutions in one-dimensional thermoelasticity with second sound, Quart. Appl. Math., 50 (1992), 727-742.  doi: 10.1090/qam/1193663.
  • 加载中

Article Metrics

HTML views(444) PDF downloads(160) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint