In this paper, we consider the non-conservative compressible two-fluid model with constant viscosity coefficients and unequal pressure function in $\mathbb{R}^3$, we study the vanishing capillarity limit of the smooth solution to the initial value problem. We first establish the uniform estimates of global smooth solution with respect to the capillary coefficients $σ^+$ and $σ^-$, then by the Lion-Aubin lemma, we can obtain the unique smooth solution of the 3D non-conservative compressible two-fluid model with the capillary coefficients converges globally in time to the smooth solution of the 3D generic two-fluid model as $σ^+$ and $σ^-$ tend to zero. Also, we give the convergence rate estimates with respect to the capillary coefficients $σ^+$ and $σ^-$ for any given positive time.
Citation: |
[1] |
R. Adams, Sobolev Spaces, Springer-Verlag, New York, 1985.
![]() |
[2] |
J. Bear, Dynamics of Fluids in Porous Media, Environmental Science Series, New York: Elsevier; 1972. reprinted with corrections, New York: Dover; 1988.
![]() |
[3] |
D. F. Bian, L. Yao and C. J. Zhu, Vanishing capillarity limit of the compressible fluid models of korteweg type to the Navier--Stokes equations, SIAM J. Math. Anal., 46 (2014), 1633-1650.
doi: 10.1137/130942231.![]() ![]() ![]() |
[4] |
D. Bresch, B. Desjardins, J.-M. Ghidaglia and E. Grenier, Global weak solutions to a generic two-fluid model, Arch. Rational Mech. Anal., 196 (2010), 599-629.
doi: 10.1007/s00205-009-0261-6.![]() ![]() ![]() |
[5] |
D. Bresch, X. D. Huang and J. Li, Global weak solutions to one-dimensional non-conservation viscous compressible two-phase system, Comm. Math. Phys., 309 (2012), 737-755.
doi: 10.1007/s00220-011-1379-6.![]() ![]() ![]() |
[6] |
H. B. Cui, W. J. Wang, L. Yao and C. J. Zhu, Decay rates for a nonconservative compressible generic two-fluid model, SIAM J. Math. Anal., 48 (2016), 470-512.
doi: 10.1137/15M1037792.![]() ![]() ![]() |
[7] |
R. Danchin and B. Desjardins, Existence of solutions for compressible fluid models of Koreteweg type, Ann. Inst. H. Pincare Anal. Non Lineaire, 18 (2001), 97-133.
doi: 10.1016/S0294-1449(00)00056-1.![]() ![]() ![]() |
[8] |
R. J. Duan, H. X. Liu, S. Ukai and T. Yang, Optimal $L^p$-$L^q$ convergence rates for the compressible Navier-Stokes equations with potential force, J. Differential Equations, 238 (2007), 220-233.
doi: 10.1016/j.jde.2007.03.008.![]() ![]() ![]() |
[9] |
R. J. Duan, S. Ukai, T. Yang and H. J. Zhao, Optimal convergence rates for the compressible Navier-Stokes equations with potential force, Math. Models Methods Appl. Sci., 17 (2007), 737-758.
doi: 10.1142/S021820250700208X.![]() ![]() ![]() |
[10] |
R. J. Duan, L. Z. Ruan and C. J. Zhu, Optimal decay rates to conservation laws with diffusion type terms of regularity-gain and regularity-loss, Math. Models Methods Appl. Sci., 22 (2012), 1250012, 39 pp.
doi: 10.1142/S0218202512500121.![]() ![]() ![]() |
[11] |
S. Evje, W. J. Wang and H. Y. Wen, Global well-posedness and decay rates of strong solutions to a non-conservative compressible two-fluid model, Arch. Rational Mech. Anal., 221 (2016), 1285-1316.
doi: 10.1007/s00205-016-0984-0.![]() ![]() ![]() |
[12] |
S. Evje, H. Y. Wen and L. Yao, Global solutions to a one-dimensional non-conservative two-phase model, Discrete Contin. Dyn. Syst., 36 (2016), 1927-1955.
doi: 10.3934/dcds.2016.36.1927.![]() ![]() ![]() |
[13] |
H. Hattori and D. Li, Solutions for two-dimensional stytem for materials of Korteweg type, SIAM J. Math. Anal., 25 (1994), 85-98.
doi: 10.1137/S003614109223413X.![]() ![]() ![]() |
[14] |
H. Hattori and D. Li, Global Solutions of a high-dimensional stytem for Korteweg type materials, J. Math. Anal. Appl., 198 (1996), 84-97.
doi: 10.1006/jmaa.1996.0069.![]() ![]() ![]() |
[15] |
H. Hattori and D. Li, The existence of global Solutions to a fluid dynamic model for materials for Korteweg type, J. Partial Differential Equations, 9 (1996), 323-342.
![]() ![]() |
[16] |
D. Hoff and K. Zumbrum, Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves, Z. Angew. Math. Phys., 48 (1997), 597-614.
doi: 10.1007/s000330050049.![]() ![]() ![]() |
[17] |
M. Ishii, Thremo-Fluid Dynamic Theory of Two-Phase Flow, Eyrolles, paris, 1975.
![]() |
[18] |
S. Kawashima, Systems of Hyperbolic-Parabolic Comprosite Type, with Applications to the Equations of Msgnetohydrodynsmics, Kyoto Unvisity, 1983.
![]() |
[19] |
M. Kotschote, Strong solutions for a compressible fluid model of Korteweg type, H. Poincaré Anal. Non Linéaire, 25 (2008), 679-696.
doi: 10.1016/j.anihpc.2007.03.005.![]() ![]() ![]() |
[20] |
D. L. Li, The Green's function of the Navier-Stokes equations for the gas dynamics in $\mathbb{R}^3$, Comm. Math. Phys., 257 (2005), 579-619.
doi: 10.1007/s00220-005-1351-4.![]() ![]() ![]() |
[21] |
T. P. Liu and W. K. Wang, The pointwise estimates of diffusion waves for the Navier-Stokes equations in odd multi-dimensions, Comm. Math. Phys., 196 (1998), 145-173.
doi: 10.1007/s002200050418.![]() ![]() ![]() |
[22] |
A. J. Madjda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, 2002.
![]() ![]() |
[23] |
A. Matsumura and T. Nishida, The intial value problem for the equation of motion of compressible viscous and heat-conductive gases, J. Math. Kyoto Univ, 20 (1980), 67-104.
![]() ![]() |
[24] |
A. Prosperertti, Computational Methods for Multiphase Flow, Cambridge University Press, 2007.
![]() ![]() |
[25] |
X. K. Pu and B. L. Guo, Global existence and semiclassical limit for quantum hydrodynamic equations with viscosity and heat conduction, Kinet. Relat. Models, 9 (2016), 165-191.
doi: 10.3934/krm.2016.9.165.![]() ![]() ![]() |
[26] |
I. E. Segal, Quantization and dispersion for nonlinear relativistic equations, Mathematical Theory of Elementary Particles, MIT Press, Cambridge, MA,, (1996), 79-108.
![]() ![]() |
[27] |
J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117.
doi: 10.1137/0521061.![]() ![]() ![]() |
[28] |
M. E. Taylor, Partial Differential Equations Ⅲ: Nonlinear Equations, Springer, New York, 1997.
![]() ![]() |
[29] |
Y. J. Wang and Z. Tan, Optimal decay rates for the compressible fluid models of Korteweg type, J. Math. Anal. Appl., 379 (2011), 256-271.
doi: 10.1016/j.jmaa.2011.01.006.![]() ![]() ![]() |