\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Vanishing capillarity limit of the non-conservative compressible two-fluid model

  • * Corresponding author: Lei Yao

    * Corresponding author: Lei Yao
Lai and Yao were supported by the National Natural Science Foundation of China #11571280,11331005, FANEDD #201315, Science and Technology Program of Shaanxi Province #2013KJXX-23, and China Scholarship Council. Wen was supported by the National Natural Science Foundation of China #11671150,11301205 and the Fundamental Research Funds for the Central Universities #D2154560.
Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we consider the non-conservative compressible two-fluid model with constant viscosity coefficients and unequal pressure function in $\mathbb{R}^3$, we study the vanishing capillarity limit of the smooth solution to the initial value problem. We first establish the uniform estimates of global smooth solution with respect to the capillary coefficients $σ^+$ and $σ^-$, then by the Lion-Aubin lemma, we can obtain the unique smooth solution of the 3D non-conservative compressible two-fluid model with the capillary coefficients converges globally in time to the smooth solution of the 3D generic two-fluid model as $σ^+$ and $σ^-$ tend to zero. Also, we give the convergence rate estimates with respect to the capillary coefficients $σ^+$ and $σ^-$ for any given positive time.

    Mathematics Subject Classification: Primary:76T10, 76N10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] R. AdamsSobolev Spaces, Springer-Verlag, New York, 1985. 
    [2] J. Bear, Dynamics of Fluids in Porous Media, Environmental Science Series, New York: Elsevier; 1972. reprinted with corrections, New York: Dover; 1988.
    [3] D. F. BianL. Yao and C. J. Zhu, Vanishing capillarity limit of the compressible fluid models of korteweg type to the Navier--Stokes equations, SIAM J. Math. Anal., 46 (2014), 1633-1650.  doi: 10.1137/130942231.
    [4] D. BreschB. DesjardinsJ.-M. Ghidaglia and E. Grenier, Global weak solutions to a generic two-fluid model, Arch. Rational Mech. Anal., 196 (2010), 599-629.  doi: 10.1007/s00205-009-0261-6.
    [5] D. BreschX. D. Huang and J. Li, Global weak solutions to one-dimensional non-conservation viscous compressible two-phase system, Comm. Math. Phys., 309 (2012), 737-755.  doi: 10.1007/s00220-011-1379-6.
    [6] H. B. CuiW. J. WangL. Yao and C. J. Zhu, Decay rates for a nonconservative compressible generic two-fluid model, SIAM J. Math. Anal., 48 (2016), 470-512.  doi: 10.1137/15M1037792.
    [7] R. Danchin and B. Desjardins, Existence of solutions for compressible fluid models of Koreteweg type, Ann. Inst. H. Pincare Anal. Non Lineaire, 18 (2001), 97-133.  doi: 10.1016/S0294-1449(00)00056-1.
    [8] R. J. DuanH. X. LiuS. Ukai and T. Yang, Optimal $L^p$-$L^q$ convergence rates for the compressible Navier-Stokes equations with potential force, J. Differential Equations, 238 (2007), 220-233.  doi: 10.1016/j.jde.2007.03.008.
    [9] R. J. DuanS. UkaiT. Yang and H. J. Zhao, Optimal convergence rates for the compressible Navier-Stokes equations with potential force, Math. Models Methods Appl. Sci., 17 (2007), 737-758.  doi: 10.1142/S021820250700208X.
    [10] R. J. DuanL. Z. Ruan and C. J. Zhu, Optimal decay rates to conservation laws with diffusion type terms of regularity-gain and regularity-loss, Math. Models Methods Appl. Sci., 22 (2012), 1250012, 39 pp.  doi: 10.1142/S0218202512500121.
    [11] S. EvjeW. J. Wang and H. Y. Wen, Global well-posedness and decay rates of strong solutions to a non-conservative compressible two-fluid model, Arch. Rational Mech. Anal., 221 (2016), 1285-1316.  doi: 10.1007/s00205-016-0984-0.
    [12] S. EvjeH. Y. Wen and L. Yao, Global solutions to a one-dimensional non-conservative two-phase model, Discrete Contin. Dyn. Syst., 36 (2016), 1927-1955.  doi: 10.3934/dcds.2016.36.1927.
    [13] H. Hattori and D. Li, Solutions for two-dimensional stytem for materials of Korteweg type, SIAM J. Math. Anal., 25 (1994), 85-98.  doi: 10.1137/S003614109223413X.
    [14] H. Hattori and D. Li, Global Solutions of a high-dimensional stytem for Korteweg type materials, J. Math. Anal. Appl., 198 (1996), 84-97.  doi: 10.1006/jmaa.1996.0069.
    [15] H. Hattori and D. Li, The existence of global Solutions to a fluid dynamic model for materials for Korteweg type, J. Partial Differential Equations, 9 (1996), 323-342. 
    [16] D. Hoff and K. Zumbrum, Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves, Z. Angew. Math. Phys., 48 (1997), 597-614.  doi: 10.1007/s000330050049.
    [17] M. IshiiThremo-Fluid Dynamic Theory of Two-Phase Flow, Eyrolles, paris, 1975. 
    [18] S. Kawashima, Systems of Hyperbolic-Parabolic Comprosite Type, with Applications to the Equations of Msgnetohydrodynsmics, Kyoto Unvisity, 1983.
    [19] M. Kotschote, Strong solutions for a compressible fluid model of Korteweg type, H. Poincaré Anal. Non Linéaire, 25 (2008), 679-696.  doi: 10.1016/j.anihpc.2007.03.005.
    [20] D. L. Li, The Green's function of the Navier-Stokes equations for the gas dynamics in $\mathbb{R}^3$, Comm. Math. Phys., 257 (2005), 579-619.  doi: 10.1007/s00220-005-1351-4.
    [21] T. P. Liu and W. K. Wang, The pointwise estimates of diffusion waves for the Navier-Stokes equations in odd multi-dimensions, Comm. Math. Phys., 196 (1998), 145-173.  doi: 10.1007/s002200050418.
    [22] A. J. Madjda and  A. L. BertozziVorticity and Incompressible Flow, Cambridge University Press, 2002. 
    [23] A. Matsumura and T. Nishida, The intial value problem for the equation of motion of compressible viscous and heat-conductive gases, J. Math. Kyoto Univ, 20 (1980), 67-104. 
    [24] A. ProspererttiComputational Methods for Multiphase Flow, Cambridge University Press, 2007. 
    [25] X. K. Pu and B. L. Guo, Global existence and semiclassical limit for quantum hydrodynamic equations with viscosity and heat conduction, Kinet. Relat. Models, 9 (2016), 165-191.  doi: 10.3934/krm.2016.9.165.
    [26] I. E. Segal, Quantization and dispersion for nonlinear relativistic equations, Mathematical Theory of Elementary Particles, MIT Press, Cambridge, MA,, (1996), 79-108. 
    [27] J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117.  doi: 10.1137/0521061.
    [28] M. E. TaylorPartial Differential Equations Ⅲ: Nonlinear Equations, Springer, New York, 1997. 
    [29] Y. J. Wang and Z. Tan, Optimal decay rates for the compressible fluid models of Korteweg type, J. Math. Anal. Appl., 379 (2011), 256-271.  doi: 10.1016/j.jmaa.2011.01.006.
  • 加载中
SHARE

Article Metrics

HTML views(1057) PDF downloads(196) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return