    June  2017, 22(4): 1425-1434. doi: 10.3934/dcdsb.2017068

## Feedback controllability for blowup points of semilinear heat equations

 School of Mathematics & Statistics, Northeast Normal University, Changchun 130024, China

* Corresponding author: Ping Lin

Received  April 2016 Revised  August 2016 Published  February 2017

Fund Project: The author is supported by NSF of China under grant 11471070.

This paper studies a controllability problem for blowup points of two classes of semilinear heat equations.Our goal to act controls on the systems we studied is to make the corresponding solutions blow upat given points. This differs with the controllability problem of equations with the property of blowup in the references, where the purpose of using controls is to prevent blowupby controls. We obtain the feedback controls for our controllability problem of blowup points.

Citation: Ping Lin. Feedback controllability for blowup points of semilinear heat equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1425-1434. doi: 10.3934/dcdsb.2017068
##### References:
  J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford Ser., 28 (1977), 473-486.  doi: 10.1093/qmath/28.4.473.  Google Scholar  J. Bricmont and A. Kupiainen, Universality in blow-up for nonlinear heat equations, Nonlinearity, 7 (1994), 539-575.  doi: 10.1088/0951-7715/7/2/011.  Google Scholar  J. M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, 136 American Mathematical Society, Providence, RI, 2007. Google Scholar  J. M. Coron and S. Guerrero, Local null controllability of the two-dimensional Navier-Stokes system in the torus with a control force having a vanishing component, J. Math. Pures Appl., 92 (2009), 528-545.  doi: 10.1016/j.matpur.2009.05.015.  Google Scholar  J. M. Coron and P. Lissy, Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components, Invent. Math., 198 (2014), 833-880.  doi: 10.1007/s00222-014-0512-5.  Google Scholar  A. Doubova, E. Fernández-Cara, M. González-Burgos and E. Zuazua, On the controllability of parabolic systems with a nonlinear term involving the state and the gradient, SIAM J. Control Optim., 41 (2002), 798-819.  doi: 10.1137/S0363012901386465.  Google Scholar  E. Fernandez-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. H. Poincaré Anal. NonLinéaire, 17 (2000), 583-616.  doi: 10.1016/S0294-1449(00)00117-7.  Google Scholar  S. Filippas and R. V. Kohn, Refined asymptotics for the blow-up of $u_t-\triangle u=u^p$, Comm. Pure Appl. Math., 45 (1992), 821-869.  doi: 10.1002/cpa.3160450703.  Google Scholar  A. Friedman and B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J., 34 (1985), 425-447.  doi: 10.1512/iumj.1985.34.34025.  Google Scholar  H. Fujita, On the blowing-up of solutions of the Cauchy problem for $u_t=Δ u+u^{1+α}$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124. Google Scholar  Y. Giga and R. V. Kohn, Characterizing blowup using similarity variables, Indiana Univ. Math. J., 36 (1987), 1-40.  doi: 10.1512/iumj.1987.36.36001.  Google Scholar  Y. Giga and R. V. Kohn, Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math., 42 (1989), 845-884.  doi: 10.1002/cpa.3160420607.  Google Scholar  M. A. Herrero and J. J. L. Velázquez, Flat blow-up in one-dimensional semilinear heat equations, Differential Integral Equations, 5 (1992), 973-997. Google Scholar  B. Hu, Blow-up Theories for Semilinear Parabolic Equations Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-18460-4.  Google Scholar  S. Khenissy, Y. Rébaï and H. Zaag, Continuity of the blow-up profile with respect to initial data and to the blow-up point for a semilinear heat equation, Ann. Inst. H. Poincaré, 28 (2011), 1-26.  doi: 10.1016/j.anihpc.2010.09.006.  Google Scholar  H. A. Levine, The role of critical exponents in blow-up theorems, SIAM Rev., 32 (1990), 262-288.  doi: 10.1137/1032046.  Google Scholar  P. Lin and G. Wang, Some properties for blowup parabolic equations and their application, J. Math. Pures Appl., 101 (2014), 223-255.  doi: 10.1016/j.matpur.2013.06.001.  Google Scholar  Z. Ling and Z. Wang, Global existence and finite time blowup for a nonlocal parabolic system, Bull. Belg. Math. Soc. Simon Stevin, 20 (2013), 371-383. Google Scholar  F. Merle and H. Zaag, A Liouville theorem for vector-valued nonlinear heat equations and applications, Math. Ann., 316 (2000), 103-137.  doi: 10.1007/s002080050006.  Google Scholar  Q. Tao, H. Gao and Y. Yang, Controllability results for weakly blowingup reaction-diffusion system, Electron. J. Qual. Theory Differ. Equ., 11 (2012), 1-19. Google Scholar  C. Wang and S. Zheng, Critical Fujita exponents of degenerate and singular parabolic equations, Proc. Roy. Soc. Edinburgh A, 136 (2006), 415-430.  doi: 10.1017/S0308210500004637.  Google Scholar  C. Wang and S. Zheng, Critical Fujita exponents for a class of quasilinear equations with homogeneous Neumann boundary data, Nonlinearity, 20 (2007), 1343-1359.  doi: 10.1088/0951-7715/20/6/002.  Google Scholar

show all references

##### References:
  J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford Ser., 28 (1977), 473-486.  doi: 10.1093/qmath/28.4.473.  Google Scholar  J. Bricmont and A. Kupiainen, Universality in blow-up for nonlinear heat equations, Nonlinearity, 7 (1994), 539-575.  doi: 10.1088/0951-7715/7/2/011.  Google Scholar  J. M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, 136 American Mathematical Society, Providence, RI, 2007. Google Scholar  J. M. Coron and S. Guerrero, Local null controllability of the two-dimensional Navier-Stokes system in the torus with a control force having a vanishing component, J. Math. Pures Appl., 92 (2009), 528-545.  doi: 10.1016/j.matpur.2009.05.015.  Google Scholar  J. M. Coron and P. Lissy, Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components, Invent. Math., 198 (2014), 833-880.  doi: 10.1007/s00222-014-0512-5.  Google Scholar  A. Doubova, E. Fernández-Cara, M. González-Burgos and E. Zuazua, On the controllability of parabolic systems with a nonlinear term involving the state and the gradient, SIAM J. Control Optim., 41 (2002), 798-819.  doi: 10.1137/S0363012901386465.  Google Scholar  E. Fernandez-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. H. Poincaré Anal. NonLinéaire, 17 (2000), 583-616.  doi: 10.1016/S0294-1449(00)00117-7.  Google Scholar  S. Filippas and R. V. Kohn, Refined asymptotics for the blow-up of $u_t-\triangle u=u^p$, Comm. Pure Appl. Math., 45 (1992), 821-869.  doi: 10.1002/cpa.3160450703.  Google Scholar  A. Friedman and B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J., 34 (1985), 425-447.  doi: 10.1512/iumj.1985.34.34025.  Google Scholar  H. Fujita, On the blowing-up of solutions of the Cauchy problem for $u_t=Δ u+u^{1+α}$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124. Google Scholar  Y. Giga and R. V. Kohn, Characterizing blowup using similarity variables, Indiana Univ. Math. J., 36 (1987), 1-40.  doi: 10.1512/iumj.1987.36.36001.  Google Scholar  Y. Giga and R. V. Kohn, Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math., 42 (1989), 845-884.  doi: 10.1002/cpa.3160420607.  Google Scholar  M. A. Herrero and J. J. L. Velázquez, Flat blow-up in one-dimensional semilinear heat equations, Differential Integral Equations, 5 (1992), 973-997. Google Scholar  B. Hu, Blow-up Theories for Semilinear Parabolic Equations Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-18460-4.  Google Scholar  S. Khenissy, Y. Rébaï and H. Zaag, Continuity of the blow-up profile with respect to initial data and to the blow-up point for a semilinear heat equation, Ann. Inst. H. Poincaré, 28 (2011), 1-26.  doi: 10.1016/j.anihpc.2010.09.006.  Google Scholar  H. A. Levine, The role of critical exponents in blow-up theorems, SIAM Rev., 32 (1990), 262-288.  doi: 10.1137/1032046.  Google Scholar  P. Lin and G. Wang, Some properties for blowup parabolic equations and their application, J. Math. Pures Appl., 101 (2014), 223-255.  doi: 10.1016/j.matpur.2013.06.001.  Google Scholar  Z. Ling and Z. Wang, Global existence and finite time blowup for a nonlocal parabolic system, Bull. Belg. Math. Soc. Simon Stevin, 20 (2013), 371-383. Google Scholar  F. Merle and H. Zaag, A Liouville theorem for vector-valued nonlinear heat equations and applications, Math. Ann., 316 (2000), 103-137.  doi: 10.1007/s002080050006.  Google Scholar  Q. Tao, H. Gao and Y. Yang, Controllability results for weakly blowingup reaction-diffusion system, Electron. J. Qual. Theory Differ. Equ., 11 (2012), 1-19. Google Scholar  C. Wang and S. Zheng, Critical Fujita exponents of degenerate and singular parabolic equations, Proc. Roy. Soc. Edinburgh A, 136 (2006), 415-430.  doi: 10.1017/S0308210500004637.  Google Scholar  C. Wang and S. Zheng, Critical Fujita exponents for a class of quasilinear equations with homogeneous Neumann boundary data, Nonlinearity, 20 (2007), 1343-1359.  doi: 10.1088/0951-7715/20/6/002.  Google Scholar
  Zhengce Zhang, Bei Hu. Gradient blowup rate for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems, 2010, 26 (2) : 767-779. doi: 10.3934/dcds.2010.26.767  Jong-Shenq Guo, Bei Hu. Blowup rate estimates for the heat equation with a nonlinear gradient source term. Discrete & Continuous Dynamical Systems, 2008, 20 (4) : 927-937. doi: 10.3934/dcds.2008.20.927  Zhengce Zhang, Yanyan Li. Gradient blowup solutions of a semilinear parabolic equation with exponential source. Communications on Pure & Applied Analysis, 2013, 12 (1) : 269-280. doi: 10.3934/cpaa.2013.12.269  Zhengce Zhang, Yan Li. Global existence and gradient blowup of solutions for a semilinear parabolic equation with exponential source. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 3019-3029. doi: 10.3934/dcdsb.2014.19.3019  Yanghong Huang, Andrea Bertozzi. Asymptotics of blowup solutions for the aggregation equation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1309-1331. doi: 10.3934/dcdsb.2012.17.1309  Jong-Shenq Guo, Satoshi Sasayama, Chi-Jen Wang. Blowup rate estimate for a system of semilinear parabolic equations. Communications on Pure & Applied Analysis, 2009, 8 (2) : 711-718. doi: 10.3934/cpaa.2009.8.711  Chi-Cheung Poon. Blowup rate of solutions of a degenerate nonlinear parabolic equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5317-5336. doi: 10.3934/dcdsb.2019060  Enrique Fernández-Cara, Arnaud Münch. Numerical null controllability of semi-linear 1-D heat equations: Fixed point, least squares and Newton methods. Mathematical Control & Related Fields, 2012, 2 (3) : 217-246. doi: 10.3934/mcrf.2012.2.217  Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, 2021, 14 (8) : 2607-2623. doi: 10.3934/dcdss.2021032  Xuan Liu, Ting Zhang. $H^2$ blowup result for a Schrödinger equation with nonlinear source term. Electronic Research Archive, 2020, 28 (2) : 777-794. doi: 10.3934/era.2020039  Pengyu Chen, Xuping Zhang, Yongxiang Li. A blowup alternative result for fractional nonautonomous evolution equation of Volterra type. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1975-1992. doi: 10.3934/cpaa.2018094  Piero D'Ancona, Mamoru Okamoto. Blowup and ill-posedness results for a Dirac equation without gauge invariance. Evolution Equations & Control Theory, 2016, 5 (2) : 225-234. doi: 10.3934/eect.2016002  Zhaoyang Yin. Well-posedness, blowup, and global existence for an integrable shallow water equation. Discrete & Continuous Dynamical Systems, 2004, 11 (2&3) : 393-411. doi: 10.3934/dcds.2004.11.393  Thierry Cazenave, Yvan Martel, Lifeng Zhao. Finite-time blowup for a Schrödinger equation with nonlinear source term. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 1171-1183. doi: 10.3934/dcds.2019050  Yingying Xie, Jian Su, Liquan Mei. Blowup results and concentration in focusing Schrödinger-Hartree equation. Discrete & Continuous Dynamical Systems, 2020, 40 (8) : 5001-5017. doi: 10.3934/dcds.2020209  Jerry L. Bona, Stéphane Vento, Fred B. Weissler. Singularity formation and blowup of complex-valued solutions of the modified KdV equation. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 4811-4840. doi: 10.3934/dcds.2013.33.4811  Dario Pighin, Enrique Zuazua. Controllability under positivity constraints of semilinear heat equations. Mathematical Control & Related Fields, 2018, 8 (3&4) : 935-964. doi: 10.3934/mcrf.2018041  Víctor Hernández-Santamaría, Luz de Teresa. Robust Stackelberg controllability for linear and semilinear heat equations. Evolution Equations & Control Theory, 2018, 7 (2) : 247-273. doi: 10.3934/eect.2018012  Lawrence Ein, Wenbo Niu, Jinhyung Park. On blowup of secant varieties of curves. Electronic Research Archive, , () : -. doi: 10.3934/era.2021055  Yaguang Wang, Shiyong Zhu. Blowup of solutions to the thermal boundary layer problem in two-dimensional incompressible heat conducting flow. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3233-3244. doi: 10.3934/cpaa.2020141

2020 Impact Factor: 1.327