This paper studies a controllability problem for blowup points of two classes of semilinear heat equations.Our goal to act controls on the systems we studied is to make the corresponding solutions blow upat given points. This differs with the controllability problem of equations with the property of blowup in the references, where the purpose of using controls is to prevent blowupby controls. We obtain the feedback controls for our controllability problem of blowup points.
Citation: |
[1] |
J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford Ser., 28 (1977), 473-486.
doi: 10.1093/qmath/28.4.473.![]() ![]() ![]() |
[2] |
J. Bricmont and A. Kupiainen, Universality in blow-up for nonlinear heat equations, Nonlinearity, 7 (1994), 539-575.
doi: 10.1088/0951-7715/7/2/011.![]() ![]() ![]() |
[3] |
J. M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, 136 American Mathematical Society, Providence, RI, 2007.
![]() ![]() |
[4] |
J. M. Coron and S. Guerrero, Local null controllability of the two-dimensional Navier-Stokes system in the torus with a control force having a vanishing component, J. Math. Pures Appl., 92 (2009), 528-545.
doi: 10.1016/j.matpur.2009.05.015.![]() ![]() ![]() |
[5] |
J. M. Coron and P. Lissy, Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components, Invent. Math., 198 (2014), 833-880.
doi: 10.1007/s00222-014-0512-5.![]() ![]() ![]() |
[6] |
A. Doubova, E. Fernández-Cara, M. González-Burgos and E. Zuazua, On the controllability of parabolic systems with a nonlinear term involving the state and the gradient, SIAM J. Control Optim., 41 (2002), 798-819.
doi: 10.1137/S0363012901386465.![]() ![]() ![]() |
[7] |
E. Fernandez-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. H. Poincaré Anal. NonLinéaire, 17 (2000), 583-616.
doi: 10.1016/S0294-1449(00)00117-7.![]() ![]() ![]() |
[8] |
S. Filippas and R. V. Kohn, Refined asymptotics for the blow-up of $u_t-\triangle u=u^p$, Comm. Pure Appl. Math., 45 (1992), 821-869.
doi: 10.1002/cpa.3160450703.![]() ![]() ![]() |
[9] |
A. Friedman and B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J., 34 (1985), 425-447.
doi: 10.1512/iumj.1985.34.34025.![]() ![]() ![]() |
[10] |
H. Fujita, On the blowing-up of solutions of the Cauchy problem for $u_t=Δ u+u^{1+α}$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124.
![]() ![]() |
[11] |
Y. Giga and R. V. Kohn, Characterizing blowup using similarity variables, Indiana Univ. Math. J., 36 (1987), 1-40.
doi: 10.1512/iumj.1987.36.36001.![]() ![]() ![]() |
[12] |
Y. Giga and R. V. Kohn, Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math., 42 (1989), 845-884.
doi: 10.1002/cpa.3160420607.![]() ![]() ![]() |
[13] |
M. A. Herrero and J. J. L. Velázquez, Flat blow-up in one-dimensional semilinear heat equations, Differential Integral Equations, 5 (1992), 973-997.
![]() ![]() |
[14] |
B. Hu, Blow-up Theories for Semilinear Parabolic Equations Springer, Heidelberg, 2011.
doi: 10.1007/978-3-642-18460-4.![]() ![]() ![]() |
[15] |
S. Khenissy, Y. Rébaï and H. Zaag, Continuity of the blow-up profile with respect to initial data and to the blow-up point for a semilinear heat equation, Ann. Inst. H. Poincaré, 28 (2011), 1-26.
doi: 10.1016/j.anihpc.2010.09.006.![]() ![]() ![]() |
[16] |
H. A. Levine, The role of critical exponents in blow-up theorems, SIAM Rev., 32 (1990), 262-288.
doi: 10.1137/1032046.![]() ![]() ![]() |
[17] |
P. Lin and G. Wang, Some properties for blowup parabolic equations and their application, J. Math. Pures Appl., 101 (2014), 223-255.
doi: 10.1016/j.matpur.2013.06.001.![]() ![]() ![]() |
[18] |
Z. Ling and Z. Wang, Global existence and finite time blowup for a nonlocal parabolic system, Bull. Belg. Math. Soc. Simon Stevin, 20 (2013), 371-383.
![]() ![]() |
[19] |
F. Merle and H. Zaag, A Liouville theorem for vector-valued nonlinear heat equations and applications, Math. Ann., 316 (2000), 103-137.
doi: 10.1007/s002080050006.![]() ![]() ![]() |
[20] |
Q. Tao, H. Gao and Y. Yang, Controllability results for weakly blowingup reaction-diffusion system, Electron. J. Qual. Theory Differ. Equ., 11 (2012), 1-19.
![]() ![]() |
[21] |
C. Wang and S. Zheng, Critical Fujita exponents of degenerate and singular parabolic equations, Proc. Roy. Soc. Edinburgh A, 136 (2006), 415-430.
doi: 10.1017/S0308210500004637.![]() ![]() ![]() |
[22] |
C. Wang and S. Zheng, Critical Fujita exponents for a class of quasilinear equations with homogeneous Neumann boundary data, Nonlinearity, 20 (2007), 1343-1359.
doi: 10.1088/0951-7715/20/6/002.![]() ![]() ![]() |