June  2017, 22(4): 1435-1460. doi: 10.3934/dcdsb.2017069

Saddle-node bifurcations of multiple homoclinic solutions in ODES

1. 

Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205, USA

2. 

College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China

* Corresponding author: Changrong Zhu

Received  August 2015 Revised  December 2016 Published  February 2017

Fund Project: XBL was partially supported by NSF grant DMS-1211070. ZCR was partially supported by NSFC grant 11671058 and NCET-12-0586. The authors would like to thank Moody Chu for helpful discussion on the codiagonalization of quadratic forms

We study codimension 3 degenerate homoclinic bifurcations under periodic perturbations. Assume that among the 3 bifurcation equations, one is due to the homoclinic tangecy along the orbital direction. To the lowest order, the bifurcation equations become 3 quadratic equations. Under generic conditions on perturbations of the normal and tangential directions of the homoclinic orbit, up to 8 homoclinic orbits can be created through saddle-node bifurcations. Our results generate the homoclinic tangency bifurcation in Guckenheimer and Holmes [8].

Citation: Xiao-Biao Lin, Changrong Zhu. Saddle-node bifurcations of multiple homoclinic solutions in ODES. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1435-1460. doi: 10.3934/dcdsb.2017069
References:
[1]

X. P. Chen and W. S. Wang, Some conditions for co-diagolizations of two matrixes (in Chinese), J. Zaozhuang University, 22 (2005), 11-13.   Google Scholar

[2]

S. N. ChowJ. K. Hale and J. Mallet-Parret, An example of bifurcation to homoclinic orbits, J. Diff. Equs., 37 (1980), 351-373.  doi: 10.1016/0022-0396(80)90104-7.  Google Scholar

[3]

T. Dray, The Geometry of Special Relativity CRC Press, Jul 2,2012. doi: 10.1201/b12293.  Google Scholar

[4]

M. Fečkan, Bifurcation from degenerate homoclinics in periodically forced systems, Discr. Cont. Dyn. Systems, 5 (1999), 359-374.  doi: 10.3934/dcds.1999.5.359.  Google Scholar

[5]

J. R. Gruendler, Homoclinic solutions for autonomous systems in arbitrary dimension, SIAM J.Math. Anal., 23 (1992), 702-721.  doi: 10.1137/0523036.  Google Scholar

[6]

J. R. Gruendler, Homoclinic solutions for autonomous ordinary differential equations with nonautonomous perturbation, J. Diff. Equs., 122 (1995), 1-26.  doi: 10.1006/jdeq.1995.1136.  Google Scholar

[7]

J. R. Gruendler, The existence of transverse homoclinic solutions for higher order equations, J. Diff. Equs., 130 (1996), 307-320.  doi: 10.1006/jdeq.1996.0145.  Google Scholar

[8]

J. R. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-1140-2.  Google Scholar

[9]

J. K. Hale, Introduction to dynamic bifurcation, in Bifurcation Theory and Applications, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1057 (1984), 106-151. Google Scholar

[10]

J. K. Hale and X.-B. Lin, Heteroclinic orbits for Retarded functional differential equations, J. Diff. Equs., 65 (1986), 175-202.  doi: 10.1016/0022-0396(86)90032-X.  Google Scholar

[11]

R. Horn, Topics in Matrix Analysis Cambridge University Press, 1994.  Google Scholar

[12]

R. Horn and C. Johnson, Matrix Analysis Cambridge University Press, 1985. doi: 10.1017/CBO9780511810817.  Google Scholar

[13]

L. Jaeger and H. Kantz, Homoclinic tangencies and non-normal Jacobians-effects of noise in nonhyperbolic chaotic systems, Physica D, 105 (1997), 79-96.  doi: 10.1016/S0167-2789(97)00247-9.  Google Scholar

[14]

J. Knobloch, Bifurcation of degenerate homoclinics in reversible and conservative systems, J. Dyn. Diff. Eqns., 9 (1997), 427-444.  doi: 10.1007/BF02227489.  Google Scholar

[15]

J. Li and X.-B. Lin, Traveling wave solutions for the Painlevé-integrable coupled KDV equations, Electronic. J. Diff. Equs., 2008 (2008), 1-11.   Google Scholar

[16]

X.-B. Lin, Using Melnikov's method to solve Silnikov's problems, Proc. Roy. Soc. Edinburgh, 116 (1990), 295-325.  doi: 10.1017/S0308210500031528.  Google Scholar

[17]

X.-B. LinB. Long and C. Zhu, Multiple transverse homoclinic solutions near a degenerate homoclinic orbit, J. Diff. Equs., 259 (2015), 1-24.  doi: 10.1016/j.jde.2015.01.046.  Google Scholar

[18]

J. Mallet-Paret, Generic periodic solutions of functional differential equations, J. Diff. Equs., 25 (1977), 163-183.  doi: 10.1016/0022-0396(77)90198-X.  Google Scholar

[19]

V. K. Melnikov, On the stability of the center for time periodic perturbation, Trans. Moscow Math. Soc., 12 (1963), 1-57.   Google Scholar

[20]

K. J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Diff. Equs., 55 (1984), 225-256.  doi: 10.1016/0022-0396(84)90082-2.  Google Scholar

[21]

K. J. Palmer, Transversal heteroclinic orbits and Cherry'y example of a non-integrable Hamiltonian system, J. Diff. Eqns., 65 (1986), 321-360.  doi: 10.1016/0022-0396(86)90023-9.  Google Scholar

show all references

References:
[1]

X. P. Chen and W. S. Wang, Some conditions for co-diagolizations of two matrixes (in Chinese), J. Zaozhuang University, 22 (2005), 11-13.   Google Scholar

[2]

S. N. ChowJ. K. Hale and J. Mallet-Parret, An example of bifurcation to homoclinic orbits, J. Diff. Equs., 37 (1980), 351-373.  doi: 10.1016/0022-0396(80)90104-7.  Google Scholar

[3]

T. Dray, The Geometry of Special Relativity CRC Press, Jul 2,2012. doi: 10.1201/b12293.  Google Scholar

[4]

M. Fečkan, Bifurcation from degenerate homoclinics in periodically forced systems, Discr. Cont. Dyn. Systems, 5 (1999), 359-374.  doi: 10.3934/dcds.1999.5.359.  Google Scholar

[5]

J. R. Gruendler, Homoclinic solutions for autonomous systems in arbitrary dimension, SIAM J.Math. Anal., 23 (1992), 702-721.  doi: 10.1137/0523036.  Google Scholar

[6]

J. R. Gruendler, Homoclinic solutions for autonomous ordinary differential equations with nonautonomous perturbation, J. Diff. Equs., 122 (1995), 1-26.  doi: 10.1006/jdeq.1995.1136.  Google Scholar

[7]

J. R. Gruendler, The existence of transverse homoclinic solutions for higher order equations, J. Diff. Equs., 130 (1996), 307-320.  doi: 10.1006/jdeq.1996.0145.  Google Scholar

[8]

J. R. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-1140-2.  Google Scholar

[9]

J. K. Hale, Introduction to dynamic bifurcation, in Bifurcation Theory and Applications, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1057 (1984), 106-151. Google Scholar

[10]

J. K. Hale and X.-B. Lin, Heteroclinic orbits for Retarded functional differential equations, J. Diff. Equs., 65 (1986), 175-202.  doi: 10.1016/0022-0396(86)90032-X.  Google Scholar

[11]

R. Horn, Topics in Matrix Analysis Cambridge University Press, 1994.  Google Scholar

[12]

R. Horn and C. Johnson, Matrix Analysis Cambridge University Press, 1985. doi: 10.1017/CBO9780511810817.  Google Scholar

[13]

L. Jaeger and H. Kantz, Homoclinic tangencies and non-normal Jacobians-effects of noise in nonhyperbolic chaotic systems, Physica D, 105 (1997), 79-96.  doi: 10.1016/S0167-2789(97)00247-9.  Google Scholar

[14]

J. Knobloch, Bifurcation of degenerate homoclinics in reversible and conservative systems, J. Dyn. Diff. Eqns., 9 (1997), 427-444.  doi: 10.1007/BF02227489.  Google Scholar

[15]

J. Li and X.-B. Lin, Traveling wave solutions for the Painlevé-integrable coupled KDV equations, Electronic. J. Diff. Equs., 2008 (2008), 1-11.   Google Scholar

[16]

X.-B. Lin, Using Melnikov's method to solve Silnikov's problems, Proc. Roy. Soc. Edinburgh, 116 (1990), 295-325.  doi: 10.1017/S0308210500031528.  Google Scholar

[17]

X.-B. LinB. Long and C. Zhu, Multiple transverse homoclinic solutions near a degenerate homoclinic orbit, J. Diff. Equs., 259 (2015), 1-24.  doi: 10.1016/j.jde.2015.01.046.  Google Scholar

[18]

J. Mallet-Paret, Generic periodic solutions of functional differential equations, J. Diff. Equs., 25 (1977), 163-183.  doi: 10.1016/0022-0396(77)90198-X.  Google Scholar

[19]

V. K. Melnikov, On the stability of the center for time periodic perturbation, Trans. Moscow Math. Soc., 12 (1963), 1-57.   Google Scholar

[20]

K. J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Diff. Equs., 55 (1984), 225-256.  doi: 10.1016/0022-0396(84)90082-2.  Google Scholar

[21]

K. J. Palmer, Transversal heteroclinic orbits and Cherry'y example of a non-integrable Hamiltonian system, J. Diff. Eqns., 65 (1986), 321-360.  doi: 10.1016/0022-0396(86)90023-9.  Google Scholar

Figure 1.  Graphs for the (HH) type systems
Figure 2.  In case (4.6-1), if $h_1>0$ and $r_1<r_2$, or in case (4.6-2), if $h_1<0$ and $r_1<r_2$, then the system has $4$ solutions
Figure 3.  In case (4.6-3), if $h_1<0$ and $r_1>r_2$, or in case (4.6-4), if $h_1>0$ and $r_1>r_2$, then the system has $4$ solutions
Figure 4.  If the asymptotes of $F_1=0$ and $F_2=0$ are alternating, then there always exist exactly two solutions
Figure 5.  Figure (1) is about the (EE) case. Figure (2) is about the (HE) case. The (HE) case where the hyperbola has $y$ intercept is not shown. Figure (3) is about the (LE) case where the lines have $x$-intercepts. The (LE) case where the lines have $y$ intercepts is not shown
Figure 6.  Figure (1) is about the (HH) case where one curve has $x$ and the other has $y$ intercepts. Figure (2) is about the (HH) case where both graphs have $x$-intercepts. The (HH) case where both have $y$ intercepts in not shown
Figure 7.  Figure (1) is about the (LH) case where the lines have $x$-intercepts and the hyperbola has $y$-intercept. Figure (2) is about the (LH) case where both the lines and the hyperbola have $y$-intercepts. The two (LH) cases where the hyperbola has $x$-intercepts are not shown
[1]

Heinz Schättler, Urszula Ledzewicz. Lyapunov-Schmidt reduction for optimal control problems. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2201-2223. doi: 10.3934/dcdsb.2012.17.2201

[2]

Christian Pötzsche. Nonautonomous bifurcation of bounded solutions I: A Lyapunov-Schmidt approach. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 739-776. doi: 10.3934/dcdsb.2010.14.739

[3]

Julien Grivaux, Pascal Hubert. Loci in strata of meromorphic quadratic differentials with fully degenerate Lyapunov spectrum. Journal of Modern Dynamics, 2014, 8 (1) : 61-73. doi: 10.3934/jmd.2014.8.61

[4]

Saugata Bandyopadhyay, Bernard Dacorogna, Olivier Kneuss. The Pullback equation for degenerate forms. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 657-691. doi: 10.3934/dcds.2010.27.657

[5]

Mihail Megan, Adina Luminiţa Sasu, Bogdan Sasu. Discrete admissibility and exponential dichotomy for evolution families. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 383-397. doi: 10.3934/dcds.2003.9.383

[6]

Henrique Bursztyn, Alejandro Cabrera. Symmetries and reduction of multiplicative 2-forms. Journal of Geometric Mechanics, 2012, 4 (2) : 111-127. doi: 10.3934/jgm.2012.4.111

[7]

Thai Son Doan, Martin Rasmussen, Peter E. Kloeden. The mean-square dichotomy spectrum and a bifurcation to a mean-square attractor. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 875-887. doi: 10.3934/dcdsb.2015.20.875

[8]

Shrikrishna G. Dani. Simultaneous diophantine approximation with quadratic and linear forms. Journal of Modern Dynamics, 2008, 2 (1) : 129-138. doi: 10.3934/jmd.2008.2.129

[9]

Anish Ghosh, Dubi Kelmer. A quantitative Oppenheim theorem for generic ternary quadratic forms. Journal of Modern Dynamics, 2018, 12: 1-8. doi: 10.3934/jmd.2018001

[10]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Homoclinic orbits for a class of asymptotically quadratic Hamiltonian systems. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2855-2878. doi: 10.3934/cpaa.2019128

[11]

Rui Dilão, András Volford. Excitability in a model with a saddle-node homoclinic bifurcation. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 419-434. doi: 10.3934/dcdsb.2004.4.419

[12]

Pablo Aguirre, Bernd Krauskopf, Hinke M. Osinga. Global invariant manifolds near a Shilnikov homoclinic bifurcation. Journal of Computational Dynamics, 2014, 1 (1) : 1-38. doi: 10.3934/jcd.2014.1.1

[13]

S. Secchi, C. A. Stuart. Global bifurcation of homoclinic solutions of Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1493-1518. doi: 10.3934/dcds.2003.9.1493

[14]

Luis Barreira, Claudia Valls. Quadratic Lyapunov sequences and arbitrary growth rates. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 63-74. doi: 10.3934/dcds.2010.26.63

[15]

Sigurdur Freyr Hafstein. A constructive converse Lyapunov theorem on exponential stability. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 657-678. doi: 10.3934/dcds.2004.10.657

[16]

Constantin N. Beli. Representations of integral quadratic forms over dyadic local fields. Electronic Research Announcements, 2006, 12: 100-112.

[17]

Jyrki Lahtonen, Gary McGuire, Harold N. Ward. Gold and Kasami-Welch functions, quadratic forms, and bent functions. Advances in Mathematics of Communications, 2007, 1 (2) : 243-250. doi: 10.3934/amc.2007.1.243

[18]

Dimitri Breda, Sara Della Schiava. Pseudospectral reduction to compute Lyapunov exponents of delay differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2727-2741. doi: 10.3934/dcdsb.2018092

[19]

Éder Rítis Aragão Costa. An extension of the concept of exponential dichotomy in Fréchet spaces which is stable under perturbation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 845-868. doi: 10.3934/cpaa.2019041

[20]

Messoud Efendiev, Anna Zhigun. On an exponential attractor for a class of PDEs with degenerate diffusion and chemotaxis. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 651-673. doi: 10.3934/dcds.2018028

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (18)
  • HTML views (3)
  • Cited by (0)

Other articles
by authors

[Back to Top]