June  2017, 22(4): 1435-1460. doi: 10.3934/dcdsb.2017069

Saddle-node bifurcations of multiple homoclinic solutions in ODES

1. 

Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205, USA

2. 

College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China

* Corresponding author: Changrong Zhu

Received  August 2015 Revised  December 2016 Published  February 2017

Fund Project: XBL was partially supported by NSF grant DMS-1211070. ZCR was partially supported by NSFC grant 11671058 and NCET-12-0586. The authors would like to thank Moody Chu for helpful discussion on the codiagonalization of quadratic forms.

We study codimension 3 degenerate homoclinic bifurcations under periodic perturbations. Assume that among the 3 bifurcation equations, one is due to the homoclinic tangecy along the orbital direction. To the lowest order, the bifurcation equations become 3 quadratic equations. Under generic conditions on perturbations of the normal and tangential directions of the homoclinic orbit, up to 8 homoclinic orbits can be created through saddle-node bifurcations. Our results generate the homoclinic tangency bifurcation in Guckenheimer and Holmes [8].

Citation: Xiao-Biao Lin, Changrong Zhu. Saddle-node bifurcations of multiple homoclinic solutions in ODES. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1435-1460. doi: 10.3934/dcdsb.2017069
References:
[1]

X. P. Chen and W. S. Wang, Some conditions for co-diagolizations of two matrixes (in Chinese), J. Zaozhuang University, 22 (2005), 11-13.   Google Scholar

[2]

S. N. ChowJ. K. Hale and J. Mallet-Parret, An example of bifurcation to homoclinic orbits, J. Diff. Equs., 37 (1980), 351-373.  doi: 10.1016/0022-0396(80)90104-7.  Google Scholar

[3]

T. Dray, The Geometry of Special Relativity CRC Press, Jul 2,2012. doi: 10.1201/b12293.  Google Scholar

[4]

M. Fečkan, Bifurcation from degenerate homoclinics in periodically forced systems, Discr. Cont. Dyn. Systems, 5 (1999), 359-374.  doi: 10.3934/dcds.1999.5.359.  Google Scholar

[5]

J. R. Gruendler, Homoclinic solutions for autonomous systems in arbitrary dimension, SIAM J.Math. Anal., 23 (1992), 702-721.  doi: 10.1137/0523036.  Google Scholar

[6]

J. R. Gruendler, Homoclinic solutions for autonomous ordinary differential equations with nonautonomous perturbation, J. Diff. Equs., 122 (1995), 1-26.  doi: 10.1006/jdeq.1995.1136.  Google Scholar

[7]

J. R. Gruendler, The existence of transverse homoclinic solutions for higher order equations, J. Diff. Equs., 130 (1996), 307-320.  doi: 10.1006/jdeq.1996.0145.  Google Scholar

[8]

J. R. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-1140-2.  Google Scholar

[9]

J. K. Hale, Introduction to dynamic bifurcation, in Bifurcation Theory and Applications, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1057 (1984), 106-151. Google Scholar

[10]

J. K. Hale and X.-B. Lin, Heteroclinic orbits for Retarded functional differential equations, J. Diff. Equs., 65 (1986), 175-202.  doi: 10.1016/0022-0396(86)90032-X.  Google Scholar

[11]

R. Horn, Topics in Matrix Analysis Cambridge University Press, 1994.  Google Scholar

[12]

R. Horn and C. Johnson, Matrix Analysis Cambridge University Press, 1985. doi: 10.1017/CBO9780511810817.  Google Scholar

[13]

L. Jaeger and H. Kantz, Homoclinic tangencies and non-normal Jacobians-effects of noise in nonhyperbolic chaotic systems, Physica D, 105 (1997), 79-96.  doi: 10.1016/S0167-2789(97)00247-9.  Google Scholar

[14]

J. Knobloch, Bifurcation of degenerate homoclinics in reversible and conservative systems, J. Dyn. Diff. Eqns., 9 (1997), 427-444.  doi: 10.1007/BF02227489.  Google Scholar

[15]

J. Li and X.-B. Lin, Traveling wave solutions for the Painlevé-integrable coupled KDV equations, Electronic. J. Diff. Equs., 2008 (2008), 1-11.   Google Scholar

[16]

X.-B. Lin, Using Melnikov's method to solve Silnikov's problems, Proc. Roy. Soc. Edinburgh, 116 (1990), 295-325.  doi: 10.1017/S0308210500031528.  Google Scholar

[17]

X.-B. LinB. Long and C. Zhu, Multiple transverse homoclinic solutions near a degenerate homoclinic orbit, J. Diff. Equs., 259 (2015), 1-24.  doi: 10.1016/j.jde.2015.01.046.  Google Scholar

[18]

J. Mallet-Paret, Generic periodic solutions of functional differential equations, J. Diff. Equs., 25 (1977), 163-183.  doi: 10.1016/0022-0396(77)90198-X.  Google Scholar

[19]

V. K. Melnikov, On the stability of the center for time periodic perturbation, Trans. Moscow Math. Soc., 12 (1963), 1-57.   Google Scholar

[20]

K. J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Diff. Equs., 55 (1984), 225-256.  doi: 10.1016/0022-0396(84)90082-2.  Google Scholar

[21]

K. J. Palmer, Transversal heteroclinic orbits and Cherry'y example of a non-integrable Hamiltonian system, J. Diff. Eqns., 65 (1986), 321-360.  doi: 10.1016/0022-0396(86)90023-9.  Google Scholar

show all references

References:
[1]

X. P. Chen and W. S. Wang, Some conditions for co-diagolizations of two matrixes (in Chinese), J. Zaozhuang University, 22 (2005), 11-13.   Google Scholar

[2]

S. N. ChowJ. K. Hale and J. Mallet-Parret, An example of bifurcation to homoclinic orbits, J. Diff. Equs., 37 (1980), 351-373.  doi: 10.1016/0022-0396(80)90104-7.  Google Scholar

[3]

T. Dray, The Geometry of Special Relativity CRC Press, Jul 2,2012. doi: 10.1201/b12293.  Google Scholar

[4]

M. Fečkan, Bifurcation from degenerate homoclinics in periodically forced systems, Discr. Cont. Dyn. Systems, 5 (1999), 359-374.  doi: 10.3934/dcds.1999.5.359.  Google Scholar

[5]

J. R. Gruendler, Homoclinic solutions for autonomous systems in arbitrary dimension, SIAM J.Math. Anal., 23 (1992), 702-721.  doi: 10.1137/0523036.  Google Scholar

[6]

J. R. Gruendler, Homoclinic solutions for autonomous ordinary differential equations with nonautonomous perturbation, J. Diff. Equs., 122 (1995), 1-26.  doi: 10.1006/jdeq.1995.1136.  Google Scholar

[7]

J. R. Gruendler, The existence of transverse homoclinic solutions for higher order equations, J. Diff. Equs., 130 (1996), 307-320.  doi: 10.1006/jdeq.1996.0145.  Google Scholar

[8]

J. R. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-1140-2.  Google Scholar

[9]

J. K. Hale, Introduction to dynamic bifurcation, in Bifurcation Theory and Applications, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1057 (1984), 106-151. Google Scholar

[10]

J. K. Hale and X.-B. Lin, Heteroclinic orbits for Retarded functional differential equations, J. Diff. Equs., 65 (1986), 175-202.  doi: 10.1016/0022-0396(86)90032-X.  Google Scholar

[11]

R. Horn, Topics in Matrix Analysis Cambridge University Press, 1994.  Google Scholar

[12]

R. Horn and C. Johnson, Matrix Analysis Cambridge University Press, 1985. doi: 10.1017/CBO9780511810817.  Google Scholar

[13]

L. Jaeger and H. Kantz, Homoclinic tangencies and non-normal Jacobians-effects of noise in nonhyperbolic chaotic systems, Physica D, 105 (1997), 79-96.  doi: 10.1016/S0167-2789(97)00247-9.  Google Scholar

[14]

J. Knobloch, Bifurcation of degenerate homoclinics in reversible and conservative systems, J. Dyn. Diff. Eqns., 9 (1997), 427-444.  doi: 10.1007/BF02227489.  Google Scholar

[15]

J. Li and X.-B. Lin, Traveling wave solutions for the Painlevé-integrable coupled KDV equations, Electronic. J. Diff. Equs., 2008 (2008), 1-11.   Google Scholar

[16]

X.-B. Lin, Using Melnikov's method to solve Silnikov's problems, Proc. Roy. Soc. Edinburgh, 116 (1990), 295-325.  doi: 10.1017/S0308210500031528.  Google Scholar

[17]

X.-B. LinB. Long and C. Zhu, Multiple transverse homoclinic solutions near a degenerate homoclinic orbit, J. Diff. Equs., 259 (2015), 1-24.  doi: 10.1016/j.jde.2015.01.046.  Google Scholar

[18]

J. Mallet-Paret, Generic periodic solutions of functional differential equations, J. Diff. Equs., 25 (1977), 163-183.  doi: 10.1016/0022-0396(77)90198-X.  Google Scholar

[19]

V. K. Melnikov, On the stability of the center for time periodic perturbation, Trans. Moscow Math. Soc., 12 (1963), 1-57.   Google Scholar

[20]

K. J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Diff. Equs., 55 (1984), 225-256.  doi: 10.1016/0022-0396(84)90082-2.  Google Scholar

[21]

K. J. Palmer, Transversal heteroclinic orbits and Cherry'y example of a non-integrable Hamiltonian system, J. Diff. Eqns., 65 (1986), 321-360.  doi: 10.1016/0022-0396(86)90023-9.  Google Scholar

Figure 1.  Graphs for the (HH) type systems
Figure 2.  In case (4.6-1), if $h_1>0$ and $r_1<r_2$, or in case (4.6-2), if $h_1<0$ and $r_1<r_2$, then the system has $4$ solutions
Figure 3.  In case (4.6-3), if $h_1<0$ and $r_1>r_2$, or in case (4.6-4), if $h_1>0$ and $r_1>r_2$, then the system has $4$ solutions
Figure 4.  If the asymptotes of $F_1=0$ and $F_2=0$ are alternating, then there always exist exactly two solutions
Figure (1) is about the (EE) case. Figure (2) is about the (HE) case. The (HE) case where the hyperbola has $y$ intercept is not shown. Figure (3) is about the (LE) case where the lines have $x$-intercepts. The (LE) case where the lines have $y$ intercepts is not shown">Figure 5.  Figure (1) is about the (EE) case. Figure (2) is about the (HE) case. The (HE) case where the hyperbola has $y$ intercept is not shown. Figure (3) is about the (LE) case where the lines have $x$-intercepts. The (LE) case where the lines have $y$ intercepts is not shown
Figure (1) is about the (HH) case where one curve has $x$ and the other has $y$ intercepts. Figure (2) is about the (HH) case where both graphs have $x$-intercepts. The (HH) case where both have $y$ intercepts in not shown">Figure 6.  Figure (1) is about the (HH) case where one curve has $x$ and the other has $y$ intercepts. Figure (2) is about the (HH) case where both graphs have $x$-intercepts. The (HH) case where both have $y$ intercepts in not shown
Figure (1) is about the (LH) case where the lines have $x$-intercepts and the hyperbola has $y$-intercept. Figure (2) is about the (LH) case where both the lines and the hyperbola have $y$-intercepts. The two (LH) cases where the hyperbola has $x$-intercepts are not shown">Figure 7.  Figure (1) is about the (LH) case where the lines have $x$-intercepts and the hyperbola has $y$-intercept. Figure (2) is about the (LH) case where both the lines and the hyperbola have $y$-intercepts. The two (LH) cases where the hyperbola has $x$-intercepts are not shown
[1]

Heinz Schättler, Urszula Ledzewicz. Lyapunov-Schmidt reduction for optimal control problems. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2201-2223. doi: 10.3934/dcdsb.2012.17.2201

[2]

Christian Pötzsche. Nonautonomous bifurcation of bounded solutions I: A Lyapunov-Schmidt approach. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 739-776. doi: 10.3934/dcdsb.2010.14.739

[3]

Julien Grivaux, Pascal Hubert. Loci in strata of meromorphic quadratic differentials with fully degenerate Lyapunov spectrum. Journal of Modern Dynamics, 2014, 8 (1) : 61-73. doi: 10.3934/jmd.2014.8.61

[4]

Saugata Bandyopadhyay, Bernard Dacorogna, Olivier Kneuss. The Pullback equation for degenerate forms. Discrete & Continuous Dynamical Systems, 2010, 27 (2) : 657-691. doi: 10.3934/dcds.2010.27.657

[5]

Mihail Megan, Adina Luminiţa Sasu, Bogdan Sasu. Discrete admissibility and exponential dichotomy for evolution families. Discrete & Continuous Dynamical Systems, 2003, 9 (2) : 383-397. doi: 10.3934/dcds.2003.9.383

[6]

Henrique Bursztyn, Alejandro Cabrera. Symmetries and reduction of multiplicative 2-forms. Journal of Geometric Mechanics, 2012, 4 (2) : 111-127. doi: 10.3934/jgm.2012.4.111

[7]

Thai Son Doan, Martin Rasmussen, Peter E. Kloeden. The mean-square dichotomy spectrum and a bifurcation to a mean-square attractor. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 875-887. doi: 10.3934/dcdsb.2015.20.875

[8]

Shrikrishna G. Dani. Simultaneous diophantine approximation with quadratic and linear forms. Journal of Modern Dynamics, 2008, 2 (1) : 129-138. doi: 10.3934/jmd.2008.2.129

[9]

Anish Ghosh, Dubi Kelmer. A quantitative Oppenheim theorem for generic ternary quadratic forms. Journal of Modern Dynamics, 2018, 12: 1-8. doi: 10.3934/jmd.2018001

[10]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Homoclinic orbits for a class of asymptotically quadratic Hamiltonian systems. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2855-2878. doi: 10.3934/cpaa.2019128

[11]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[12]

Rui Dilão, András Volford. Excitability in a model with a saddle-node homoclinic bifurcation. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 419-434. doi: 10.3934/dcdsb.2004.4.419

[13]

Pablo Aguirre, Bernd Krauskopf, Hinke M. Osinga. Global invariant manifolds near a Shilnikov homoclinic bifurcation. Journal of Computational Dynamics, 2014, 1 (1) : 1-38. doi: 10.3934/jcd.2014.1.1

[14]

S. Secchi, C. A. Stuart. Global bifurcation of homoclinic solutions of Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2003, 9 (6) : 1493-1518. doi: 10.3934/dcds.2003.9.1493

[15]

Luis Barreira, Claudia Valls. Quadratic Lyapunov sequences and arbitrary growth rates. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 63-74. doi: 10.3934/dcds.2010.26.63

[16]

Sigurdur Freyr Hafstein. A constructive converse Lyapunov theorem on exponential stability. Discrete & Continuous Dynamical Systems, 2004, 10 (3) : 657-678. doi: 10.3934/dcds.2004.10.657

[17]

Constantin N. Beli. Representations of integral quadratic forms over dyadic local fields. Electronic Research Announcements, 2006, 12: 100-112.

[18]

Jyrki Lahtonen, Gary McGuire, Harold N. Ward. Gold and Kasami-Welch functions, quadratic forms, and bent functions. Advances in Mathematics of Communications, 2007, 1 (2) : 243-250. doi: 10.3934/amc.2007.1.243

[19]

Jiyoung Han. Quantitative oppenheim conjecture for $ S $-arithmetic quadratic forms of rank $ 3 $ and $ 4 $. Discrete & Continuous Dynamical Systems, 2021, 41 (5) : 2205-2225. doi: 10.3934/dcds.2020359

[20]

Éder Rítis Aragão Costa. An extension of the concept of exponential dichotomy in Fréchet spaces which is stable under perturbation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 845-868. doi: 10.3934/cpaa.2019041

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (93)
  • HTML views (87)
  • Cited by (0)

Other articles
by authors

[Back to Top]