
-
Previous Article
Morse indices and symmetry breaking for the Gelfand equation in expanding annuli
- DCDS-B Home
- This Issue
-
Next Article
Global existence for a thin film equation with subcritical mass
Optimal harvesting of a stochastic delay competitive model
1. | School of Mathematical Science, Huaiyin Normal University, Huaian 223300, China |
2. | School of Mathematics and Statistics, Northeast Normal University, Jilin 130024, China |
In this paper an $n$-species stochastic delay competitive model with harvesting is proposed. Some dynamical properties of the model are considered. We first establish sufficient conditions for persistence in the mean of the species. Then asymptotic stability in distribution of the harvesting model is studied. Next the optimal harvesting effort and the maximum harvesting yield are given by using the ergodic approach. Finally the analytical results are illustrated through simulation figures using MATLAB followed by discussions and conclusions.
References:
[1] |
L. H. R. Alvarez and L. A. Shepp,
Optimal harvesting of stochastically fluctuating populations, J. Math. Biol., 37 (1998), 155-177.
doi: 10.1007/s002850050124. |
[2] |
A. Bahar and X. Mao,
Stochastic delay population dynamics, Int. J. Pure Appl. Math., 11 (2004), 377-400.
|
[3] |
J. Bao, Z. Hou and C. Yuan,
Stability in distribution of neutral stochastic differential delay equations with Markovian switching, Statist. Probab. Lett., 79 (2009), 1663-1673.
doi: 10.1016/j.spl.2009.04.006. |
[4] |
J. Bao, X. Mao, G. Yin and C. Y. uan,
Competitive Lotka-Volterra population dynamics with jumps, Nonlinear Anal., 74 (2011), 6601-6616.
doi: 10.1016/j.na.2011.06.043. |
[5] |
J. Bao and C. Yuan,
Comparison theorem for stochastic differential delay equations with jumps, Acta Appl. Math., 116 (2011), 119-132.
doi: 10.1007/s10440-011-9633-7. |
[6] |
I. Barbalat,
Systems dequations differentielles d'osci d'oscillations nonlineaires, Revue Roumaine de Mathematiques Pures et Appliquees, 4 (1959), 267-270.
|
[7] |
J. R. Beddington and R. M. May, Harvesting natural populations in a randomly fluctuating environment, Science, 197 (1977), 463-465. Google Scholar |
[8] |
D. K. Bhattacharya and S. Begum, Bionomic equilibrium of two species system, Math. Biosci., 135 (1996), 111-127. Google Scholar |
[9] |
C. A. Braumann,
Variable effort harvesting models in random environments: Generalization to density-dependent noise intensities, Math. Biosci., 177&178 (2002), 229-245.
doi: 10.1016/S0025-5564(01)00110-9. |
[10] |
N. Bruti-Liberati and E. Platen,
Monte Carlo simulation for stochastic differential equations, Encyclopedia of Quantitative Finance, 10 (2010), 23-37.
doi: 10.1080/14697680902814233. |
[11] |
K. S. Chaudhuri and S. Saha Roy, On the combined harvesting of a prey-predator system, J. Biol. Syst., 4 (1996), 376-389. Google Scholar |
[12] |
C. W. Clark,
Bioeconomic Modelling and Fisheries Management, Wiley, New York, 1985. |
[13] |
H. Crauel and M. Gundlach,
Stochastic Dynamics, Springer-Verlag, New York, 1999.
doi: 10.1007/b97846. |
[14] |
T. C. Gard,
Stability for multispecies population models in random environments, Nonlinear Anal., 10 (1986), 1411-1419.
doi: 10.1016/0362-546X(86)90111-2. |
[15] |
K. Gopalsamy,
Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic, Dordrecht, 1992.
doi: 10.1007/978-94-015-7920-9. |
[16] |
D. J. Higham,
An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525-546.
doi: 10.1137/S0036144500378302. |
[17] |
D. Jiang, C. Ji, X. Li and D. O'Regan,
Analysis of autonomous Lotka-Volterra competition systems with random perturbation, J. Math. Anal. Appl., 390 (2012), 582-595.
doi: 10.1016/j.jmaa.2011.12.049. |
[18] |
D. Jiang and N. Shi,
A note on nonautonomous logistic equation with random perturbation, J. Math. Anal. Appl., 303 (2005), 164-172.
doi: 10.1016/j.jmaa.2004.08.027. |
[19] |
T. K. Kar,
Influence of environmental noises on the Gompertz model of two species fishery, Ecological Modelling, 17 (2004), 251-272.
|
[20] |
Y. Kuang,
Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston, 1993. |
[21] |
R. Lande, S. Engen and B. E. Saeher, Optimal harvesting of fluctuating populations with a risk of extinction, Am. Nat., 145 (1995), 728-745. Google Scholar |
[22] |
W. Li and K. Wang,
Optimal harvesting policy for general stochastic Logistic population model, J. Math. Anal. Appl., 368 (2010), 420-428.
doi: 10.1016/j.jmaa.2010.04.002. |
[23] |
M. Liu and C. Bai,
Optimal harvesting of a stochastic logistic model with time delay, J. Nonlinear Sci., 25 (2015), 277-289.
doi: 10.1007/s00332-014-9229-2. |
[24] |
M. Liu and C. Bai,
Optimal harvesting of a stochastic mutualism model with Lévy jumps, Appl. Math. Comput., 276 (2016), 301-309.
doi: 10.1016/j.amc.2015.11.089. |
[25] |
M. Liu and C. Bai,
Analysis of a stochastic tri-trophic food-chain model with harvesting, J. Math. Biol., 73 (2016), 597-625.
doi: 10.1007/s00285-016-0970-z. |
[26] |
M. Liu and M. Fan, Permanence of stochastic lotka-volterra systems, J. Nonlinear Sci. , (2016).
doi: 10.1007/s00332-016-9337-2. |
[27] |
M. Liu and M. Fan, Stability in distribution of a three-species stochastic cascade predator-prey system with time delays, IMA J. Appl. Math. , (2016).
doi: 10.1093/imamat/hxw057. |
[28] |
D. Ludwig and J. M. Varah,
Optimal harvesting of a randomly fluctuating resource Ⅱ: Numerical methods and results, SIAM J. Appl. Math., 37 (1979), 185-205.
doi: 10.1137/0137012. |
[29] |
E. M. Lungu and B. $\emptyset$ksendal,
Optimal harvesting from a population in a stochastic crowded environment, Math. Biosci., 145 (1997), 47-75.
doi: 10.1016/S0025-5564(97)00029-1. |
[30] |
Y. Lv, R. Yuan and Y. Pei,
Dynamics in two nonsmooth predator-preymodels with threshold harvesting, Nonlinear Dyn., 74 (2013), 107-132.
doi: 10.1007/s11071-013-0952-2. |
[31] |
X. Mao and C. Yuan,
Stochastic Differential Equations with Markovian Switching, Imperial College Press, London, 2006.
doi: 10.1142/p473. |
[32] |
R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, New York, 2001. Google Scholar |
[33] |
M. Mesterton-Gibbons, On the optimal policy for combined harvesting of predator and prey, Nat. Resour. Model. , 3 (1988), 303. |
[34] |
D. Pal, G. S. Mahaptra and G. P. Samanta,
Optimal harvesting of prey-predator system with interval biological parameters: A bioeconomic model, Math. Biosci., 241 (2013), 181-187.
doi: 10.1016/j.mbs.2012.11.007. |
[35] |
D. Prato and J. Zabczyk,
Ergodicity for Infinite Dimensional Systems, Cambridge University Press, Cambridge, 1996. |
[36] |
D. L. Ragogin and G. Brown, Harvest polices and non-market valuation in a predator prey system, J. Environ. Econ. Manag., 12 (1985), 155-168. Google Scholar |
[37] |
D. Ryan and F. Hanson,
Optimal harvesting of a logistic population in an environment with stochastic jumps, J. Math. Biol., 24 (1986), 259-277.
doi: 10.1007/BF00275637. |
[38] |
Q. S. Song, R. Stockbridge and C. Zhu,
On optimal harvesting problems in random environments, SIAM J. Control Optim., 49 (2011), 859-889.
doi: 10.1137/100797333. |
[39] |
Y. Zhang and Q. Zhang,
Dynamic behavior in a delayed stage-structured population model with stochastic fluctuation and harvesting, Nonlinear Dynam., 66 (2011), 231-245.
doi: 10.1007/s11071-010-9923-z. |
[40] |
C. Zhu and G. Yin,
On hybrid competitive Lotka-Volterra ecosystems, Nonlinear Anal., 71 (2009), e1370-e1379.
doi: 10.1016/j.na.2009.01.166. |
[41] |
X. Zou, W. Li and K. Wang,
Ergodic method on optimal harvesting for a stochastic Gompertz-type diffusion process, Appl. Math. Lett., 26 (2013), 170-174.
doi: 10.1016/j.aml.2012.08.006. |
[42] |
X. Zou and K. Wang,
Optimal harvesting for a Logistic population dynamics driven by a Lévy process, J. Optim. Theory Appl., 161 (2014), 969-979.
doi: 10.1007/s10957-013-0451-0. |
[43] |
X. Zou and K. Wang,
Optimal harvesting for a stochastic regime-switching logistic diffusion system with jumps, Nonlinear Anal. Hybrid Syst., 13 (2014), 32-44.
doi: 10.1016/j.nahs.2014.01.001. |
show all references
References:
[1] |
L. H. R. Alvarez and L. A. Shepp,
Optimal harvesting of stochastically fluctuating populations, J. Math. Biol., 37 (1998), 155-177.
doi: 10.1007/s002850050124. |
[2] |
A. Bahar and X. Mao,
Stochastic delay population dynamics, Int. J. Pure Appl. Math., 11 (2004), 377-400.
|
[3] |
J. Bao, Z. Hou and C. Yuan,
Stability in distribution of neutral stochastic differential delay equations with Markovian switching, Statist. Probab. Lett., 79 (2009), 1663-1673.
doi: 10.1016/j.spl.2009.04.006. |
[4] |
J. Bao, X. Mao, G. Yin and C. Y. uan,
Competitive Lotka-Volterra population dynamics with jumps, Nonlinear Anal., 74 (2011), 6601-6616.
doi: 10.1016/j.na.2011.06.043. |
[5] |
J. Bao and C. Yuan,
Comparison theorem for stochastic differential delay equations with jumps, Acta Appl. Math., 116 (2011), 119-132.
doi: 10.1007/s10440-011-9633-7. |
[6] |
I. Barbalat,
Systems dequations differentielles d'osci d'oscillations nonlineaires, Revue Roumaine de Mathematiques Pures et Appliquees, 4 (1959), 267-270.
|
[7] |
J. R. Beddington and R. M. May, Harvesting natural populations in a randomly fluctuating environment, Science, 197 (1977), 463-465. Google Scholar |
[8] |
D. K. Bhattacharya and S. Begum, Bionomic equilibrium of two species system, Math. Biosci., 135 (1996), 111-127. Google Scholar |
[9] |
C. A. Braumann,
Variable effort harvesting models in random environments: Generalization to density-dependent noise intensities, Math. Biosci., 177&178 (2002), 229-245.
doi: 10.1016/S0025-5564(01)00110-9. |
[10] |
N. Bruti-Liberati and E. Platen,
Monte Carlo simulation for stochastic differential equations, Encyclopedia of Quantitative Finance, 10 (2010), 23-37.
doi: 10.1080/14697680902814233. |
[11] |
K. S. Chaudhuri and S. Saha Roy, On the combined harvesting of a prey-predator system, J. Biol. Syst., 4 (1996), 376-389. Google Scholar |
[12] |
C. W. Clark,
Bioeconomic Modelling and Fisheries Management, Wiley, New York, 1985. |
[13] |
H. Crauel and M. Gundlach,
Stochastic Dynamics, Springer-Verlag, New York, 1999.
doi: 10.1007/b97846. |
[14] |
T. C. Gard,
Stability for multispecies population models in random environments, Nonlinear Anal., 10 (1986), 1411-1419.
doi: 10.1016/0362-546X(86)90111-2. |
[15] |
K. Gopalsamy,
Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic, Dordrecht, 1992.
doi: 10.1007/978-94-015-7920-9. |
[16] |
D. J. Higham,
An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525-546.
doi: 10.1137/S0036144500378302. |
[17] |
D. Jiang, C. Ji, X. Li and D. O'Regan,
Analysis of autonomous Lotka-Volterra competition systems with random perturbation, J. Math. Anal. Appl., 390 (2012), 582-595.
doi: 10.1016/j.jmaa.2011.12.049. |
[18] |
D. Jiang and N. Shi,
A note on nonautonomous logistic equation with random perturbation, J. Math. Anal. Appl., 303 (2005), 164-172.
doi: 10.1016/j.jmaa.2004.08.027. |
[19] |
T. K. Kar,
Influence of environmental noises on the Gompertz model of two species fishery, Ecological Modelling, 17 (2004), 251-272.
|
[20] |
Y. Kuang,
Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston, 1993. |
[21] |
R. Lande, S. Engen and B. E. Saeher, Optimal harvesting of fluctuating populations with a risk of extinction, Am. Nat., 145 (1995), 728-745. Google Scholar |
[22] |
W. Li and K. Wang,
Optimal harvesting policy for general stochastic Logistic population model, J. Math. Anal. Appl., 368 (2010), 420-428.
doi: 10.1016/j.jmaa.2010.04.002. |
[23] |
M. Liu and C. Bai,
Optimal harvesting of a stochastic logistic model with time delay, J. Nonlinear Sci., 25 (2015), 277-289.
doi: 10.1007/s00332-014-9229-2. |
[24] |
M. Liu and C. Bai,
Optimal harvesting of a stochastic mutualism model with Lévy jumps, Appl. Math. Comput., 276 (2016), 301-309.
doi: 10.1016/j.amc.2015.11.089. |
[25] |
M. Liu and C. Bai,
Analysis of a stochastic tri-trophic food-chain model with harvesting, J. Math. Biol., 73 (2016), 597-625.
doi: 10.1007/s00285-016-0970-z. |
[26] |
M. Liu and M. Fan, Permanence of stochastic lotka-volterra systems, J. Nonlinear Sci. , (2016).
doi: 10.1007/s00332-016-9337-2. |
[27] |
M. Liu and M. Fan, Stability in distribution of a three-species stochastic cascade predator-prey system with time delays, IMA J. Appl. Math. , (2016).
doi: 10.1093/imamat/hxw057. |
[28] |
D. Ludwig and J. M. Varah,
Optimal harvesting of a randomly fluctuating resource Ⅱ: Numerical methods and results, SIAM J. Appl. Math., 37 (1979), 185-205.
doi: 10.1137/0137012. |
[29] |
E. M. Lungu and B. $\emptyset$ksendal,
Optimal harvesting from a population in a stochastic crowded environment, Math. Biosci., 145 (1997), 47-75.
doi: 10.1016/S0025-5564(97)00029-1. |
[30] |
Y. Lv, R. Yuan and Y. Pei,
Dynamics in two nonsmooth predator-preymodels with threshold harvesting, Nonlinear Dyn., 74 (2013), 107-132.
doi: 10.1007/s11071-013-0952-2. |
[31] |
X. Mao and C. Yuan,
Stochastic Differential Equations with Markovian Switching, Imperial College Press, London, 2006.
doi: 10.1142/p473. |
[32] |
R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, New York, 2001. Google Scholar |
[33] |
M. Mesterton-Gibbons, On the optimal policy for combined harvesting of predator and prey, Nat. Resour. Model. , 3 (1988), 303. |
[34] |
D. Pal, G. S. Mahaptra and G. P. Samanta,
Optimal harvesting of prey-predator system with interval biological parameters: A bioeconomic model, Math. Biosci., 241 (2013), 181-187.
doi: 10.1016/j.mbs.2012.11.007. |
[35] |
D. Prato and J. Zabczyk,
Ergodicity for Infinite Dimensional Systems, Cambridge University Press, Cambridge, 1996. |
[36] |
D. L. Ragogin and G. Brown, Harvest polices and non-market valuation in a predator prey system, J. Environ. Econ. Manag., 12 (1985), 155-168. Google Scholar |
[37] |
D. Ryan and F. Hanson,
Optimal harvesting of a logistic population in an environment with stochastic jumps, J. Math. Biol., 24 (1986), 259-277.
doi: 10.1007/BF00275637. |
[38] |
Q. S. Song, R. Stockbridge and C. Zhu,
On optimal harvesting problems in random environments, SIAM J. Control Optim., 49 (2011), 859-889.
doi: 10.1137/100797333. |
[39] |
Y. Zhang and Q. Zhang,
Dynamic behavior in a delayed stage-structured population model with stochastic fluctuation and harvesting, Nonlinear Dynam., 66 (2011), 231-245.
doi: 10.1007/s11071-010-9923-z. |
[40] |
C. Zhu and G. Yin,
On hybrid competitive Lotka-Volterra ecosystems, Nonlinear Anal., 71 (2009), e1370-e1379.
doi: 10.1016/j.na.2009.01.166. |
[41] |
X. Zou, W. Li and K. Wang,
Ergodic method on optimal harvesting for a stochastic Gompertz-type diffusion process, Appl. Math. Lett., 26 (2013), 170-174.
doi: 10.1016/j.aml.2012.08.006. |
[42] |
X. Zou and K. Wang,
Optimal harvesting for a Logistic population dynamics driven by a Lévy process, J. Optim. Theory Appl., 161 (2014), 969-979.
doi: 10.1007/s10957-013-0451-0. |
[43] |
X. Zou and K. Wang,
Optimal harvesting for a stochastic regime-switching logistic diffusion system with jumps, Nonlinear Anal. Hybrid Syst., 13 (2014), 32-44.
doi: 10.1016/j.nahs.2014.01.001. |

Parameter | Value |
0.5 | |
0.4 | |
0.02 | |
0.055 | |
0.5 | |
0.2 | |
0.25 | |
0.4 | |
10 | |
8 | |
0.4 | |
0.3 |
Parameter | Value |
0.5 | |
0.4 | |
0.02 | |
0.055 | |
0.5 | |
0.2 | |
0.25 | |
0.4 | |
10 | |
8 | |
0.4 | |
0.3 |
Parameter | Value |
0.8 | |
0.5 | |
0.5 | |
0.2 | |
0.1 | |
0.4 | |
10 | |
10 | |
0.2 | |
0.2 |
Parameter | Value |
0.8 | |
0.5 | |
0.5 | |
0.2 | |
0.1 | |
0.4 | |
10 | |
10 | |
0.2 | |
0.2 |
[1] |
Xiaoling Zou, Ke Wang. Optimal harvesting for a stochastic N-dimensional competitive Lotka-Volterra model with jumps. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 683-701. doi: 10.3934/dcdsb.2015.20.683 |
[2] |
Tomás Caraballo, Renato Colucci, Luca Guerrini. On a predator prey model with nonlinear harvesting and distributed delay. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2703-2727. doi: 10.3934/cpaa.2018128 |
[3] |
Giuseppe Maria Coclite, Mauro Garavello, Laura V. Spinolo. Optimal strategies for a time-dependent harvesting problem. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 865-900. doi: 10.3934/dcdss.2018053 |
[4] |
Jingtao Shi, Juanjuan Xu, Huanshui Zhang. Stochastic recursive optimal control problem with time delay and applications. Mathematical Control & Related Fields, 2015, 5 (4) : 859-888. doi: 10.3934/mcrf.2015.5.859 |
[5] |
Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014 |
[6] |
Tomás Caraballo, Leonid Shaikhet. Stability of delay evolution equations with stochastic perturbations. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2095-2113. doi: 10.3934/cpaa.2014.13.2095 |
[7] |
Hiroaki Morimoto. Optimal harvesting and planting control in stochastic logistic population models. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2545-2559. doi: 10.3934/dcdsb.2012.17.2545 |
[8] |
Meng Liu, Chuanzhi Bai, Yi Jin. Population dynamical behavior of a two-predator one-prey stochastic model with time delay. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2513-2538. doi: 10.3934/dcds.2017108 |
[9] |
Sanling Yuan, Xuehui Ji, Huaiping Zhu. Asymptotic behavior of a delayed stochastic logistic model with impulsive perturbations. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1477-1498. doi: 10.3934/mbe.2017077 |
[10] |
Cristina Anton, Alan Yong. Stochastic dynamics and survival analysis of a cell population model with random perturbations. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1077-1098. doi: 10.3934/mbe.2018048 |
[11] |
Sie Long Kek, Mohd Ismail Abd Aziz, Kok Lay Teo, Rohanin Ahmad. An iterative algorithm based on model-reality differences for discrete-time nonlinear stochastic optimal control problems. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 109-125. doi: 10.3934/naco.2013.3.109 |
[12] |
Sie Long Kek, Kok Lay Teo, Mohd Ismail Abd Aziz. Filtering solution of nonlinear stochastic optimal control problem in discrete-time with model-reality differences. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 207-222. doi: 10.3934/naco.2012.2.207 |
[13] |
Sie Long Kek, Mohd Ismail Abd Aziz. Output regulation for discrete-time nonlinear stochastic optimal control problems with model-reality differences. Numerical Algebra, Control & Optimization, 2015, 5 (3) : 275-288. doi: 10.3934/naco.2015.5.275 |
[14] |
Monika Joanna Piotrowska, Urszula Foryś, Marek Bodnar, Jan Poleszczuk. A simple model of carcinogenic mutations with time delay and diffusion. Mathematical Biosciences & Engineering, 2013, 10 (3) : 861-872. doi: 10.3934/mbe.2013.10.861 |
[15] |
Songbai Guo, Wanbiao Ma. Global dynamics of a microorganism flocculation model with time delay. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1883-1891. doi: 10.3934/cpaa.2017091 |
[16] |
Hong Yang, Junjie Wei. Dynamics of spatially heterogeneous viral model with time delay. Communications on Pure & Applied Analysis, 2020, 19 (1) : 85-102. doi: 10.3934/cpaa.2020005 |
[17] |
Yangzi Hu, Fuke Wu. The improved results on the stochastic Kolmogorov system with time-varying delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1481-1497. doi: 10.3934/dcdsb.2015.20.1481 |
[18] |
David Lipshutz. Exit time asymptotics for small noise stochastic delay differential equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3099-3138. doi: 10.3934/dcds.2018135 |
[19] |
Jiaohui Xu, Tomás Caraballo. Long time behavior of fractional impulsive stochastic differential equations with infinite delay. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2719-2743. doi: 10.3934/dcdsb.2018272 |
[20] |
Gastão S. F. Frederico, Delfim F. M. Torres. Noether's symmetry Theorem for variational and optimal control problems with time delay. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 619-630. doi: 10.3934/naco.2012.2.619 |
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]