June  2017, 22(4): 1509-1523. doi: 10.3934/dcdsb.2017072

Morse indices and symmetry breaking for the Gelfand equation in expanding annuli

Department of Mathematics, Henan Normal University, Xinxiang 453007, China

* Corresponding author

Received  February 2016 Revised  November 2016 Published  February 2017

Fund Project: The research of the first author is supported by NSFC (11371117) and Startup Fund for Doctors of Henan Normal University (qd14154); the research of the second author is supported by NSFC (11171092, 11571093).

Bifurcation of nonradial solutions from radial solutions of
$-Δ u=λ e^u$
in expanding annuli of ${\mathbb{R}^N}$ with $3 ≤q N ≤q 9$ is studied. To obtain the main results, we use a blow-up argument via Morse indices of the regular entire solutions of (0.1).
Citation: Linfeng Mei, Zongming Guo. Morse indices and symmetry breaking for the Gelfand equation in expanding annuli. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1509-1523. doi: 10.3934/dcdsb.2017072
References:
[1]

T. BartschM. ClappM. Grossi and F. Pacella, Asymptotically radial solutions in expanding annular domains, Math. Ann., 352 (2012), 485-515.  doi: 10.1007/s00208-011-0646-3.  Google Scholar

[2]

M. G. Crandall and P. H. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rational Mech. Anal., 58 (1975), 207-218.  doi: 10.1007/BF00280741.  Google Scholar

[3]

E. N. Dancer and A. Faria, On the classification of solutions of $-Δ u=e^u$ on ${\mathbb{R}^N}$ : stability outside a compact set and applications, Proc. Amer. Math. Soc., 137 (2009), 1333-1338.  doi: 10.1090/S0002-9939-08-09772-4.  Google Scholar

[4]

L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations Chapman & Hall / CRC Monographs and Surveys in Pure and Applied Mathematics, 143 2011. doi: 10.1201/b10802.  Google Scholar

[5]

A. Farina, Stable solutions of $-Δ u=e^u$ on ${\mathbb{R}^N}$, C. R. Acad. Sci. Paris, 345 (2007), 63-66.  doi: 10.1016/j.crma.2007.05.021.  Google Scholar

[6]

B. GidasW. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.  doi: 10.1007/BF01221125.  Google Scholar

[7]

F. GladialiM. GrossiF. Pacella and P. N. Srikanth, Bifurcation and symmetry breaking for a class of semilinear elliptic equations in an annulus, Calc. Var. PDEs, 40 (2011), 295-317.  doi: 10.1007/s00526-010-0341-3.  Google Scholar

[8]

Y. Y. Li, Existence of many positive solutions of semilinear elliptic equations on annulus, J. Differential Equations, 83 (1990), 348-376.  doi: 10.1016/0022-0396(90)90062-T.  Google Scholar

[9]

S. S. Lin, Asymptotic behavior of positive solutions to semilinear elliptic equations on expanding annuli, J. Differential Equations, 120 (1995), 255-288.  doi: 10.1006/jdeq.1995.1112.  Google Scholar

[10]

S. S. Lin, Existence of many positive nonradial solutions for nonlinear elliptic equations on an annulus, J. Differential Equations, 103 (1993), 338-349.  doi: 10.1006/jdeq.1993.1053.  Google Scholar

[11]

S. S. Lin, Existence of positive nonradial solutions for nonlinear elliptic equations in annular domains, Trans. Amer. Math. Soc., 332 (1992), 775-791.  doi: 10.1090/S0002-9947-1992-1055571-1.  Google Scholar

[12]

S. S. Lin, Positive radial solutions and nonradial bifurcations for semilinear elliptic equations in annular domains, J. Differential Equations, 86 (1990), 367-391.  doi: 10.1016/0022-0396(90)90035-N.  Google Scholar

[13]

K. Nagasaki and T. Suzuki, Radial and nonradial solutions for the nonlinear eigenvalue problem $Δ u + λ e^u = 0$ on annuli in $\mathbb{R}^2$, J. Differential Equations, 87 (1990), 144-168.  doi: 10.1016/0022-0396(90)90020-P.  Google Scholar

[14]

K. Nagasaki and T. Suzuki, Radial solutions of $Δ u + λ e^u = 0$ on annuli in higher demensions, J. Differential Equations, 100 (1992), 137-161.  doi: 10.1016/0022-0396(92)90129-B.  Google Scholar

[15]

K. Nagasaki and T. Suzuki, Spectral and related properties about the Emdent-Fower equation $Δ u + λ e^u = 0$ on circular domains, Math. Ann., 299 (1994), 1-15.  doi: 10.1007/BF01459770.  Google Scholar

[16]

R. D. Nussbaum, The fixed point index for local condensing maps, Ann. Mat. Pura Appl., 89 (1971), 217-258.  doi: 10.1007/BF02414948.  Google Scholar

[17]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513.  doi: 10.1016/0022-1236(71)90030-9.  Google Scholar

[18]

P. H. Rabinowitz, Some aspects of nonlinear eigenvalue problems, Rocky Mountain J. Math., 3 (1973), 161-202.  doi: 10.1216/RMJ-1973-3-2-161.  Google Scholar

[19]

J. Smoller and A. Wasserman, Symmetry-breaking for solutions of semilinear elliptic equations with general boundary conditions, Comm. Math. Phys., 105 (1986), 415-441.  doi: 10.1007/BF01205935.  Google Scholar

show all references

References:
[1]

T. BartschM. ClappM. Grossi and F. Pacella, Asymptotically radial solutions in expanding annular domains, Math. Ann., 352 (2012), 485-515.  doi: 10.1007/s00208-011-0646-3.  Google Scholar

[2]

M. G. Crandall and P. H. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rational Mech. Anal., 58 (1975), 207-218.  doi: 10.1007/BF00280741.  Google Scholar

[3]

E. N. Dancer and A. Faria, On the classification of solutions of $-Δ u=e^u$ on ${\mathbb{R}^N}$ : stability outside a compact set and applications, Proc. Amer. Math. Soc., 137 (2009), 1333-1338.  doi: 10.1090/S0002-9939-08-09772-4.  Google Scholar

[4]

L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations Chapman & Hall / CRC Monographs and Surveys in Pure and Applied Mathematics, 143 2011. doi: 10.1201/b10802.  Google Scholar

[5]

A. Farina, Stable solutions of $-Δ u=e^u$ on ${\mathbb{R}^N}$, C. R. Acad. Sci. Paris, 345 (2007), 63-66.  doi: 10.1016/j.crma.2007.05.021.  Google Scholar

[6]

B. GidasW. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.  doi: 10.1007/BF01221125.  Google Scholar

[7]

F. GladialiM. GrossiF. Pacella and P. N. Srikanth, Bifurcation and symmetry breaking for a class of semilinear elliptic equations in an annulus, Calc. Var. PDEs, 40 (2011), 295-317.  doi: 10.1007/s00526-010-0341-3.  Google Scholar

[8]

Y. Y. Li, Existence of many positive solutions of semilinear elliptic equations on annulus, J. Differential Equations, 83 (1990), 348-376.  doi: 10.1016/0022-0396(90)90062-T.  Google Scholar

[9]

S. S. Lin, Asymptotic behavior of positive solutions to semilinear elliptic equations on expanding annuli, J. Differential Equations, 120 (1995), 255-288.  doi: 10.1006/jdeq.1995.1112.  Google Scholar

[10]

S. S. Lin, Existence of many positive nonradial solutions for nonlinear elliptic equations on an annulus, J. Differential Equations, 103 (1993), 338-349.  doi: 10.1006/jdeq.1993.1053.  Google Scholar

[11]

S. S. Lin, Existence of positive nonradial solutions for nonlinear elliptic equations in annular domains, Trans. Amer. Math. Soc., 332 (1992), 775-791.  doi: 10.1090/S0002-9947-1992-1055571-1.  Google Scholar

[12]

S. S. Lin, Positive radial solutions and nonradial bifurcations for semilinear elliptic equations in annular domains, J. Differential Equations, 86 (1990), 367-391.  doi: 10.1016/0022-0396(90)90035-N.  Google Scholar

[13]

K. Nagasaki and T. Suzuki, Radial and nonradial solutions for the nonlinear eigenvalue problem $Δ u + λ e^u = 0$ on annuli in $\mathbb{R}^2$, J. Differential Equations, 87 (1990), 144-168.  doi: 10.1016/0022-0396(90)90020-P.  Google Scholar

[14]

K. Nagasaki and T. Suzuki, Radial solutions of $Δ u + λ e^u = 0$ on annuli in higher demensions, J. Differential Equations, 100 (1992), 137-161.  doi: 10.1016/0022-0396(92)90129-B.  Google Scholar

[15]

K. Nagasaki and T. Suzuki, Spectral and related properties about the Emdent-Fower equation $Δ u + λ e^u = 0$ on circular domains, Math. Ann., 299 (1994), 1-15.  doi: 10.1007/BF01459770.  Google Scholar

[16]

R. D. Nussbaum, The fixed point index for local condensing maps, Ann. Mat. Pura Appl., 89 (1971), 217-258.  doi: 10.1007/BF02414948.  Google Scholar

[17]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513.  doi: 10.1016/0022-1236(71)90030-9.  Google Scholar

[18]

P. H. Rabinowitz, Some aspects of nonlinear eigenvalue problems, Rocky Mountain J. Math., 3 (1973), 161-202.  doi: 10.1216/RMJ-1973-3-2-161.  Google Scholar

[19]

J. Smoller and A. Wasserman, Symmetry-breaking for solutions of semilinear elliptic equations with general boundary conditions, Comm. Math. Phys., 105 (1986), 415-441.  doi: 10.1007/BF01205935.  Google Scholar

[1]

Sanjay Dharmavaram, Timothy J. Healey. Direct construction of symmetry-breaking directions in bifurcation problems with spherical symmetry. Discrete & Continuous Dynamical Systems - S, 2019, 12 (6) : 1669-1684. doi: 10.3934/dcdss.2019112

[2]

Jeremy L. Marzuola, Michael I. Weinstein. Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/Gross-Pitaevskii equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1505-1554. doi: 10.3934/dcds.2010.28.1505

[3]

Fanni M. Sélley. Symmetry breaking in a globally coupled map of four sites. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3707-3734. doi: 10.3934/dcds.2018161

[4]

Lucio Cadeddu, Giovanni Porru. Symmetry breaking in problems involving semilinear equations. Conference Publications, 2011, 2011 (Special) : 219-228. doi: 10.3934/proc.2011.2011.219

[5]

Hwai-Chiuan Wang. Stability and symmetry breaking of solutions of semilinear elliptic equations. Conference Publications, 2005, 2005 (Special) : 886-894. doi: 10.3934/proc.2005.2005.886

[6]

Claudia Anedda, Giovanni Porru. Symmetry breaking and other features for Eigenvalue problems. Conference Publications, 2011, 2011 (Special) : 61-70. doi: 10.3934/proc.2011.2011.61

[7]

Zongming Guo, Zhongyuan Liu, Juncheng Wei, Feng Zhou. Bifurcations of some elliptic problems with a singular nonlinearity via Morse index. Communications on Pure & Applied Analysis, 2011, 10 (2) : 507-525. doi: 10.3934/cpaa.2011.10.507

[8]

Philip Korman. Infinitely many solutions and Morse index for non-autonomous elliptic problems. Communications on Pure & Applied Analysis, 2020, 19 (1) : 31-46. doi: 10.3934/cpaa.2020003

[9]

Anna Goƚȩbiewska, Norimichi Hirano, Sƚawomir Rybicki. Global symmetry-breaking bifurcations of critical orbits of invariant functionals. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2005-2017. doi: 10.3934/dcdss.2019129

[10]

M. Ben Ayed, K. El Mehdi, M. Hammami. Nonexistence of bounded energy solutions for a fourth order equation on thin annuli. Communications on Pure & Applied Analysis, 2004, 3 (4) : 557-580. doi: 10.3934/cpaa.2004.3.557

[11]

Todd Young. A result in global bifurcation theory using the Conley index. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 387-396. doi: 10.3934/dcds.1996.2.387

[12]

Robert Skiba, Nils Waterstraat. The index bundle and multiparameter bifurcation for discrete dynamical systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5603-5629. doi: 10.3934/dcds.2017243

[13]

Jiaquan Liu, Yuxia Guo, Pingan Zeng. Relationship of the morse index and the $L^\infty$ bound of solutions for a strongly indefinite differential superlinear system. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 107-119. doi: 10.3934/dcds.2006.16.107

[14]

Fernando Antoneli, Ana Paula S. Dias, Rui Paiva. Coupled cell networks: Hopf bifurcation and interior symmetry. Conference Publications, 2011, 2011 (Special) : 71-78. doi: 10.3934/proc.2011.2011.71

[15]

Matteo Bonforte, Jean Dolbeault, Matteo Muratori, Bruno Nazaret. Weighted fast diffusion equations (Part Ⅰ): Sharp asymptotic rates without symmetry and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities. Kinetic & Related Models, 2017, 10 (1) : 33-59. doi: 10.3934/krm.2017002

[16]

Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341

[17]

Günther Hörmann. Wave breaking of periodic solutions to the Fornberg-Whitham equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1605-1613. doi: 10.3934/dcds.2018066

[18]

Xue Yang, Xinglong Wu. Wave breaking and persistent decay of solution to a shallow water wave equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2149-2165. doi: 10.3934/dcdss.2016089

[19]

Rafael Ortega. Stability and index of periodic solutions of a nonlinear telegraph equation. Communications on Pure & Applied Analysis, 2005, 4 (4) : 823-837. doi: 10.3934/cpaa.2005.4.823

[20]

Mark Jones. The bifurcation of interfacial capillary-gravity waves under O(2) symmetry. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1183-1204. doi: 10.3934/cpaa.2011.10.1183

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (20)
  • HTML views (2)
  • Cited by (0)

Other articles
by authors

[Back to Top]