[1]
|
S. Altizer, A. Dobson, P. Hosseini, P. Hudson, M. Pascual and P. Rohani, Seasonality and the dynamics of infectious diseases, Ecology Letters, 9 (2006), 467-484.
doi: 10.1111/j.1461-0248.2005.00879.x.
|
[2]
|
J. L. Aron, Mathematical modeling of immunity to malaria, Math. Biosci., 90 (1988), 385-396.
doi: 10.1016/0025-5564(88)90076-4.
|
[3]
|
A. Bomblies, Modeling the role of rainfall patterns in seasonal malaria transmission, Climatic Change, 112 (2012), 673-685.
doi: 10.1007/s10584-011-0230-6.
|
[4]
|
N. Chitnis and J. M. Hyman, Bifurcation analysis of a mathematical model for malaria transmission, SIAM J. Appl. Math., 67 (2006), 24-45.
doi: 10.1137/050638941.
|
[5]
|
N. Chitnis, J. M. Hyman and J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008), 1272-1296.
doi: 10.1007/s11538-008-9299-0.
|
[6]
|
C. Chiyaka, W. Garira and S. Dube, Transmission model of endemic human malaria in a partially immune population, Math. Comput. Modelling, 46 (2007), 806-822.
doi: 10.1016/j.mcm.2006.12.010.
|
[7]
|
C. Chiyaka, J. M. Tchuenche, W. Garira and S. Dube, A mathematical analysis of the effects of control strategies on the transmission dynamics of malaria, Appl. Math. Comput., 195 (2008), 641-662.
doi: 10.1016/j.amc.2007.05.016.
|
[8]
|
C. Corduneanu,
Almost Periodic Functions Chelsea Publishing Company New York, N. Y. , 1989.
|
[9]
|
M. Craig, I. Kleinschmidt, J. Nawn, D. Le Sueur and B. Sharp, Exploring 30 years of malaria case data in kwazulu-natal, south africa: part Ⅰ. the impact of climatic factors, Trop. Med. Int. Health, 9 (2004), 1247-1257.
doi: 10.1111/j.1365-3156.2004.01340.x.
|
[10]
|
O. Diekmann, J. A. P. Heesterbeek and J. A. Metz, On the definition and the computation of the basic reproduction ratio $R_{0}$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.
doi: 10.1007/BF00178324.
|
[11]
|
A. M. Fink,
Almost Periodic Differential Equations Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1974.
|
[12]
|
D. Gao, Y. Lou and S. Ruan, A periodic ross-macdonald model in a patchy environment, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3133-3145.
doi: 10.3934/dcdsb.2014.19.3133.
|
[13]
|
H. -W. Gao, L. -P. Wang, S. Liang, Y. -X. Liu, S. -L. Tong, J. -J. Wang, Y. -P. Li, X. -F. Wang, H. Yang and J. -Q. Ma, et al. , Change in rainfall drives malaria re-emergence in anhui province china, PLoS ONE, 7 (2012), e43686.
doi: 10.1371/journal.pone.0043686.
|
[14]
|
J. K. Hale,
Asymptotic Behavior of Dissipative Systems Math. Surveys and Monographs 25, Amer. Math. Soc. , Providence, RI, 1988.
|
[15]
|
M. B. Hoshen and A. P. Morse, A weather-driven model of malaria transmission, Malar. J., 3 (2004), 32-46.
doi: 10.1186/1475-2875-3-32.
|
[16]
|
W. Jepson, A. Moutia and C. Courtois, The malaria problem in mauritius: The bionomics of mauritian anophelines, Bulletin of entomological research, 38 (1947), 177-208.
doi: 10.1017/S0007485300030273.
|
[17]
|
Y. Lou and X.-Q. Zhao, Threshold dynamics in a time-delayed periodic SIS epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 169-186.
doi: 10.3934/dcdsb.2009.12.169.
|
[18]
|
Y. Lou and X.-Q. Zhao, A climate-based malaria transmission model with structured vector population, SIAM J. Appl. Math., 70 (2010), 2023-2044.
doi: 10.1137/080744438.
|
[19]
|
G. Macdonald et al,
The Epidemiology and Control of Malaria Oxford University Press, Oxford, UK, 1957.
|
[20]
|
P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275.
doi: 10.1137/S0036141003439173.
|
[21]
|
J. Nedelman, Introductory review some new thoughts about some old malaria models, Math. Biosci., 73 (1985), 159-182.
doi: 10.1016/0025-5564(85)90010-0.
|
[22]
|
E. Ngarakana-Gwasira, C. Bhunu and E. Mashonjowa, Assessing the impact of temperature on malaria transmission dynamics, Afr. Mat., 25 (2014), 1095-1112.
doi: 10.1007/s13370-013-0178-y.
|
[23]
|
G. Ngwa, Modelling the dynamics of endemic malaria in growing populations, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 1173-1202.
doi: 10.3934/dcdsb.2004.4.1173.
|
[24]
|
G. A. Ngwa and W. S. Shu, A mathematical model for endemic malaria with variable human and mosquito populations, Math. Comput. Modelling, 32 (2000), 747-763.
doi: 10.1016/S0895-7177(00)00169-2.
|
[25]
|
P. Reiter, Climate change and mosquito-borne disease, Envir. Hlth. Perspect., 109 (2001), 141-161.
doi: 10.2307/3434853.
|
[26]
|
R. Ross,
The Prevention of Malaria John Murray, London, 1911.
|
[27]
|
S. Ruan, D. Xiao and J. C. Beier, On the delayed ross-macdonald model for malaria transmission, Bull. Math. Biol., 70 (2008), 1098-1114.
doi: 10.1007/s11538-007-9292-z.
|
[28]
|
G. Sell,
Topological Dynamics and Ordinary Differential Equations Van Nostrand Reinhold, London, 1971.
|
[29]
|
M. Service,
Mosquito Ecology: Field Sampling Methods Springer Netherlands, 1993.
|
[30]
|
H. L. Smith,
Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative systems Math. Surveys and Monographs, 41, Amer. Math. Soc. , Providence, RI, 1995.
|
[31]
|
H. L. Smith and P. Waltman,
The Theory of the Chemostat Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511530043.
|
[32]
|
P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6.
|
[33]
|
H. Wan and H. Zhu, The impact of resource and temperature on malaria transmission, Journal of Biological Systems, 20 (2012), 285-302.
doi: 10.1142/S0218339012500118.
|
[34]
|
B. G. Wang, W. T. Li and L. Zhang, An almost periodic epidemic model with age structure in a patchy environment, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 291-311.
doi: 10.3934/dcdsb.2016.21.291.
|
[35]
|
B.-G. Wang and X.-Q. Zhao, Basic reproduction ratios for almost periodic compartmental epidemic models, J. Dyn. Diff. Equ., 25 (2013), 535-562.
doi: 10.1007/s10884-013-9304-7.
|
[36]
|
W. Wang and X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dynam. Differential Equations, 20 (2008), 699-717.
doi: 10.1007/s10884-008-9111-8.
|
[37]
|
The world health report, 2014. Available from: http://www.who.int/malaria/media/en/.
|
[38]
|
X. -Q. Zhao,
Dynamical Systems in Population Biology Springer-Verlag, New York, 2003.
doi: 10.1007/978-0-387-21761-1.
|
[39]
|
X.-Q. Zhao, Global attractivity in monotone and subhomogeneous almost periodic systems, J. Differential Equations, 187 (2003), 494-509.
doi: 10.1016/S0022-0396(02)00054-2.
|