    June  2017, 22(4): 1565-1573. doi: 10.3934/dcdsb.2017075

## Stability of equilibriums of stochastically perturbed delay differential neoclassical growth model

 School of Electrical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel

Received  May 2016 Revised  October 2016 Published  February 2017

The known nonlinear delay differential neoclassical growth model is considered. It is assumed that this model is influenced by stochastic perturbations of the white noise type and these perturbations are directly proportional to the deviation of the system state from the zero or a positive equilibrium. Sufficient conditions for stability in probability of the positive equilibrium and for exponential mean square stability of the zero equilibrium are obtained. Numerical calculations and figures illustrate the obtained stability regions and behavior of stable and unstable solutions of the considered model. The proposed investigation procedure can be applied for arbitrary nonlinear stochastic delay differential equations with the order of nonlinearity higher than one.

Citation: Leonid Shaikhet. Stability of equilibriums of stochastically perturbed delay differential neoclassical growth model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1565-1573. doi: 10.3934/dcdsb.2017075
##### References:

show all references

##### References: Stability regions for equation (1.3) (red and green) and equation (3.3) (yellow), $\gamma=3$ , $b=1$ , $h=0.02$ , $p=20$ Stability regions for equation (1.3) (red and green) and equation (3.3) (yellow), $\gamma=2$ , $b=2$ , $h=0.02$ , $p=20$ Trajectories of solution of equation (1.3) in unstable equilibrium for different initial functions: $x_0=1.19$ (green), $x_0=1.1805$ (red), $x_0=1.17$ (yellow), $A(700,300)$ , $\gamma=3$ , $b=1$ , $h=0.02$ , $p=20$ , $x_1.*=1.1805$ Trajectories of solution of equation (1.3) in stable equilibrium for different initial functions: $x_0=4.6$ (green), $x_0=1.65$ (red), $x_0=1.1$ (yellow), $A(700,300)$ , $\gamma=3$ , $b=1$ , $h=0.02$ , $p=20$ , $x_2.*=3.1270$ Trajectories of solution of equation (1.3) in unstable equilibrium for different initial functions: $x_0=0.6536$ (yellow) and $x_0=4.5215$ (red), $B(900,200)$ , $\gamma=3$ , $b=1$ , $h=0.02$ , $p=20$ , $x_1.*=0.6527$ and $x_2.*=4.5215$ Trajectories of solution of equation (3.3) in stable zero equilibrium for different initial functions: $b_0=0.8$ (green), $b_0=1.55$ (red), $b_0=100$ (yellow), $C(600,400)$ , $\gamma=3$ , $b=1$ , $h=0.02$ , $p=20$ , $x.*=0$
  Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521  Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295  Tomás Caraballo, Leonid Shaikhet. Stability of delay evolution equations with stochastic perturbations. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2095-2113. doi: 10.3934/cpaa.2014.13.2095  Junya Nishiguchi. On parameter dependence of exponential stability of equilibrium solutions in differential equations with a single constant delay. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5657-5679. doi: 10.3934/dcds.2016048  Leonid Shaikhet. Stability of delay differential equations with fading stochastic perturbations of the type of white noise and poisson's jumps. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3651-3657. doi: 10.3934/dcdsb.2020077  Wei Wang, Kai Liu, Xiulian Wang. Sensitivity to small delays of mean square stability for stochastic neutral evolution equations. Communications on Pure & Applied Analysis, 2020, 19 (4) : 2403-2418. doi: 10.3934/cpaa.2020105  Fuke Wu, Peter E. Kloeden. Mean-square random attractors of stochastic delay differential equations with random delay. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1715-1734. doi: 10.3934/dcdsb.2013.18.1715  Michael Scheutzow. Exponential growth rate for a singular linear stochastic delay differential equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1683-1696. doi: 10.3934/dcdsb.2013.18.1683  Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169  Min Zhu, Panpan Ren, Junping Li. Exponential stability of solutions for retarded stochastic differential equations without dissipativity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2923-2938. doi: 10.3934/dcdsb.2017157  Luis Barreira, Claudia Valls. Delay equations and nonuniform exponential stability. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 219-223. doi: 10.3934/dcdss.2008.1.219  Cuilian You, Yangyang Hao. Stability in mean for fuzzy differential equation. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1375-1385. doi: 10.3934/jimo.2018099  Zhen Li, Jicheng Liu. Synchronization for stochastic differential equations with nonlinear multiplicative noise in the mean square sense. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5709-5736. doi: 10.3934/dcdsb.2019103  Hailong Zhu, Jifeng Chu, Weinian Zhang. Mean-square almost automorphic solutions for stochastic differential equations with hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1935-1953. doi: 10.3934/dcds.2018078  Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020324  Pham Huu Anh Ngoc. Stability of nonlinear differential systems with delay. Evolution Equations & Control Theory, 2015, 4 (4) : 493-505. doi: 10.3934/eect.2015.4.493  Yong Ren, Huijin Yang, Wensheng Yin. Weighted exponential stability of stochastic coupled systems on networks with delay driven by $G$-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3379-3393. doi: 10.3934/dcdsb.2018325  István Györi, Ferenc Hartung. Exponential stability of a state-dependent delay system. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 773-791. doi: 10.3934/dcds.2007.18.773  Leonid Shaikhet. Stability of a positive equilibrium state for a stochastically perturbed mathematical model of glassy-winged sharpshooter population. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1167-1174. doi: 10.3934/mbe.2014.11.1167  Edoardo Beretta, Dimitri Breda. Discrete or distributed delay? Effects on stability of population growth. Mathematical Biosciences & Engineering, 2016, 13 (1) : 19-41. doi: 10.3934/mbe.2016.13.19

2019 Impact Factor: 1.27