This paper deals with the global boundedness of solutions to a fully parabolic Keller-Segel system $u_t=Δ u-\nabla (u^α \nabla v)$, $v_t=Δ v-v+u$ under non-flux boundary conditions in a smooth bounded domain $Ω\subset\mathbb{R}^{n}$. The case of $α≥ \max\{1,\frac{2}{n}\}$ with $n≥1$ was considered in a previous paper of the authors [Global boundedness of solutions to a Keller-Segel system with nonlinear sensitivity, Discrete Contin. Dyn. Syst. B, 21 (2016), 1317-1327]. In the present paper we prove for the other case $α∈(\frac{2}{3},1)$ that if $\|u_0\|_{L^\frac{nα}{2}(Ω)}$ and $\|\nabla v_0\|_{L^{nα}(Ω)}$ are small enough with $n≥q3$, then the solutions are globally bounded with both $u$ and $v$ decaying to the same constant steady state $\bar{u}_0=\frac{1}{|Ω|}∈t_Ω u_0(x) dx$ exponentially in the $L^∞$-norm as $t? ∞$. Moreover, the above conclusions still hold for all $α≥q2$ and $n≥q1$, provided $\|u_0\|_{L^{nα-n}(Ω)}$ and $\|\nabla v_0\|_{L^{∞}(Ω)}$ sufficiently small.
Citation: |
[1] |
N. Bellomo, A. Bellouquid, Y. Tao and M. Winker, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.
doi: 10.1142/S021820251550044X.![]() ![]() ![]() |
[2] |
X. Cao, Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, Discrete Contin. Dyn. Syst., 35 (2015), 1891-1904.
doi: 10.3934/dcds.2015.35.1891.![]() ![]() ![]() |
[3] |
T. Cieślak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Differential Equations, 252 (2012), 5832-5851.
doi: 10.1016/j.jde.2012.01.045.![]() ![]() ![]() |
[4] |
T. Cieślak and C. Stinner, Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2, Acta Appl. Math., 129 (2014), 135-146.
doi: 10.1007/s10440-013-9832-5.![]() ![]() ![]() |
[5] |
T. Cieślak and C. Stinner, New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models, J. Differential Equations, 258 (2015), 2080-2113.
doi: 10.1016/j.jde.2014.12.004.![]() ![]() ![]() |
[6] |
D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.
doi: 10.1016/j.jde.2004.10.022.![]() ![]() ![]() |
[7] |
S. Ishida, K. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel system of parabolic-parabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010.
doi: 10.1016/j.jde.2014.01.028.![]() ![]() ![]() |
[8] |
S. Ishida and T. Yokota, Blow-up in finite or infinite time for quasilinear degenerate keller-Segel system of parabolic-parabolic type, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2569-2596.
doi: 10.3934/dcdsb.2013.18.2569.![]() ![]() ![]() |
[9] |
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5.![]() ![]() |
[10] |
N. Mizoguchi and P. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Ann. Inst. H. Poincaé Anal. Non Linéaire, 31 (2014), 851-875.
doi: 10.1016/j.anihpc.2013.07.007.![]() ![]() ![]() |
[11] |
A. Montaru, A semilinear parabolic-elliptic chemotaxis system with critical mass in any space dimension, Nonlinearity, 26 (2013), 2669-2701.
doi: 10.1088/0951-7715/26/9/2669.![]() ![]() ![]() |
[12] |
A. Montaru, Wellposedness and regularity for a degenerate parabolic equation arising in a model of chemotaxis with nonlinear sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 231-256.
doi: 10.3934/dcdsb.2014.19.231.![]() ![]() ![]() |
[13] |
Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.
doi: 10.1016/j.jde.2011.08.019.![]() ![]() ![]() |
[14] |
M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008.![]() ![]() ![]() |
[15] |
M. Winkler, Does a 'volume-filling effect' always prevent chemotactic collapse?, Math. Methods Appl. Sci., 33 (2010), 12-24.
doi: 10.1002/mma.1146.![]() ![]() ![]() |
[16] |
M. Winkler and K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal., 72 (2010), 1044-1064.
doi: 10.1016/j.na.2009.07.045.![]() ![]() ![]() |
[17] |
H. Yu, W. Wang and S. Zheng, Global boundedness of solutions to a Keller-Segel system with nonlinear sensitivity, Discrete Contin. Dyn. Syst. B, 21 (2016), 1317-1327.
doi: 10.3934/dcdsb.2016.21.1317.![]() ![]() ![]() |