
Previous Article
Domain control of nonlinear networked systems and applications to complex disease networks
 DCDSB Home
 This Issue

Next Article
Synchronising and nonsynchronising dynamics for a twospecies aggregation model
Averaging principle for the Schrödinger equations^{†}
School of Mathematics and Statistics, and Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun 130024, China 
Averaging principle for the cubic nonlinear Schrödinger equations with rapidly oscillating potential and rapidly oscillating force are obtained, both on finite but large time intervals and on the entire time axis. This includes comparison estimate, stability estimate, and convergence result between nonlinear Schrödinger equation and its averaged equation. Furthermore, the existence of almost periodic solution for cubic nonlinear Schrödinger equations is also investigated.
References:
[1] 
A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Nauka, Moscow 1989; English transl. , NorthHolland, Amsterdam 1992. 
[2] 
A. R. Bishop, R. Flesh, M. G. Forest, D. W. McLaughlin and E. A. Overman, Correlations between chaos in a perturbed sineGordon equations and a truncated model system, SIAM J. Math. Anal., 21 (1990), 15111536. 
[3] 
N. N. Bogolyubov, On Some Statistical Methods in Mathematical Physics, Izdat. Akad. Nauk Ukr. SSR, Kiev, 1945. 
[4] 
N. N. Bogoliubov and Y. A. Mitropolsky, Asymptotic Methods in the Theory of NonLinear Oscillations, Fizmatgiz, Moscow 1963; English transl. , Gordon and Breach, New York, 1962. 
[5] 
J. L. Bona, S. M. Sun and B. Y. Zhang, A nonhomogeneous boundaryvalue problem for the Kortewegde Vries equation posed on a finite domain, Comm. Partial Differential Equations, 28 (2003), 13911436. 
[6] 
J. Bourgain, Fourier transformation restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Part 1: Schrödinger equations, GAFA, 3 (1993), 107156. 
[7] 
H. Brezis and T. Gallouet, Nonlinear Schrödinger evolution equations, Nonlinear Analysis: Theory, Methods & Applications, 4 (1980), 677681. 
[8] 
D. Cheban and J. Duan, Almost periodic solutions and global attractors of nonautonomous NavierStokes equations, Journal of Dynamics and Differential Equations, 16 (2004), 134. 
[9] 
D. Cheban, J. Duan and A. Gherco, Generalization of the second Bogolyubov's theorem for nonalmost periodic systems, Nonlinear Analysis: Real World Applications, 4 (2003), 599613. 
[10] 
Y. L. Daletskii and M. G. Krein, Stability of solutions of differential equations in Banach space, Nauka, Moscow 1970; English transl. , Araer. Math. Soc, Providence, RI 1974. 
[11] 
V. P. Dymnikov and A. N. Filatov, Mathematics of Climate Modeling, Birkhaüser, Boston, MA 1997. 
[12] 
A. N. Filatov, Asymptotic Methods in the Theory of Differential and Integrodifferential Equations, Fan, Tashkent 1974. (Russian) 
[13] 
H. Gao and J. Duan, Dynamics of quasigeostrophic fluid motion with rapidly oscillating Coriolis force, Nonlinear Anal. Real World Appl., 4 (2003), 127138. 
[14] 
H. Gao and J. Duan, Averaging principle for quasigeostrophic motion under rapidly oscillating forcing, Applied Mathematics and Mechanics, 26 (2005), 108120. 
[15] 
J. M. Ghidaglia, Finite dimensional behavior for weakly damped driven Schrödinger equations, Annales de lIHP Analyse non lineaire, 5 (1998), 365405. 
[16] 
D. Henry, Geometric Theory of Semilinear Parabolic Equations, SpringerVerlag, New York 1981. 
[17] 
A. A. Ilyin, Averaging principle for dissipative dynamical systems with rapidly oscillating righthand sides, Sbornik: Mathematics, 187 (1996), 635677. 
[18] 
A. A. Ilyin, Global averaging of dissipative dynamical system, rendiconti academia nazionale delle scidetta dli XL. Memorie di Matematica e Applicazioni, 22 (1998), 165191. 
[19]  B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge Univ. Press, Cambridge, 1982. 
[20] 
Yu. A. Mitropolskii, The Method of Averaging in NonLinear Mechanics, Naukova Dumka, Kiev, 1971. (Russian) 
[21] 
K. Nozaki and N. Bekky, Low dimensional chaos in a driven damped nonlinear Schrödinger equation, Physica D, 21 (1986), 381393. 
[22] 
M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, second ed. , in: Texts in Applied Mathematics, vol. 13, SpringerVerlag, New York, 2004. 
[23] 
L. Rosier and B. Y. Zhang, Global stabilization of the generalized Kortewegde Vries equation posed on a finite domain, SIAM Journal on Control and Optimization, 45 (2006), 927956. 
[24] 
I. Segal, Nonlinear semigroups, Annals of Mathematics, 78 (1963), 339364. 
[25] 
I. B. Simonenko, A justification of the method of averaging for abstract parabolic equations, (Russian) Dokl. Akad. Nauk SSSR, 191 (1970), 3334. 
[26]  
[27] 
R. Temam, Infinitedimensional Dynamical Systems in Mechanics and Physics, Second edition. Applied Mathematical Sciences, 68. SpringerVerlag, New York, 1997. 
show all references
References:
[1] 
A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Nauka, Moscow 1989; English transl. , NorthHolland, Amsterdam 1992. 
[2] 
A. R. Bishop, R. Flesh, M. G. Forest, D. W. McLaughlin and E. A. Overman, Correlations between chaos in a perturbed sineGordon equations and a truncated model system, SIAM J. Math. Anal., 21 (1990), 15111536. 
[3] 
N. N. Bogolyubov, On Some Statistical Methods in Mathematical Physics, Izdat. Akad. Nauk Ukr. SSR, Kiev, 1945. 
[4] 
N. N. Bogoliubov and Y. A. Mitropolsky, Asymptotic Methods in the Theory of NonLinear Oscillations, Fizmatgiz, Moscow 1963; English transl. , Gordon and Breach, New York, 1962. 
[5] 
J. L. Bona, S. M. Sun and B. Y. Zhang, A nonhomogeneous boundaryvalue problem for the Kortewegde Vries equation posed on a finite domain, Comm. Partial Differential Equations, 28 (2003), 13911436. 
[6] 
J. Bourgain, Fourier transformation restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Part 1: Schrödinger equations, GAFA, 3 (1993), 107156. 
[7] 
H. Brezis and T. Gallouet, Nonlinear Schrödinger evolution equations, Nonlinear Analysis: Theory, Methods & Applications, 4 (1980), 677681. 
[8] 
D. Cheban and J. Duan, Almost periodic solutions and global attractors of nonautonomous NavierStokes equations, Journal of Dynamics and Differential Equations, 16 (2004), 134. 
[9] 
D. Cheban, J. Duan and A. Gherco, Generalization of the second Bogolyubov's theorem for nonalmost periodic systems, Nonlinear Analysis: Real World Applications, 4 (2003), 599613. 
[10] 
Y. L. Daletskii and M. G. Krein, Stability of solutions of differential equations in Banach space, Nauka, Moscow 1970; English transl. , Araer. Math. Soc, Providence, RI 1974. 
[11] 
V. P. Dymnikov and A. N. Filatov, Mathematics of Climate Modeling, Birkhaüser, Boston, MA 1997. 
[12] 
A. N. Filatov, Asymptotic Methods in the Theory of Differential and Integrodifferential Equations, Fan, Tashkent 1974. (Russian) 
[13] 
H. Gao and J. Duan, Dynamics of quasigeostrophic fluid motion with rapidly oscillating Coriolis force, Nonlinear Anal. Real World Appl., 4 (2003), 127138. 
[14] 
H. Gao and J. Duan, Averaging principle for quasigeostrophic motion under rapidly oscillating forcing, Applied Mathematics and Mechanics, 26 (2005), 108120. 
[15] 
J. M. Ghidaglia, Finite dimensional behavior for weakly damped driven Schrödinger equations, Annales de lIHP Analyse non lineaire, 5 (1998), 365405. 
[16] 
D. Henry, Geometric Theory of Semilinear Parabolic Equations, SpringerVerlag, New York 1981. 
[17] 
A. A. Ilyin, Averaging principle for dissipative dynamical systems with rapidly oscillating righthand sides, Sbornik: Mathematics, 187 (1996), 635677. 
[18] 
A. A. Ilyin, Global averaging of dissipative dynamical system, rendiconti academia nazionale delle scidetta dli XL. Memorie di Matematica e Applicazioni, 22 (1998), 165191. 
[19]  B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge Univ. Press, Cambridge, 1982. 
[20] 
Yu. A. Mitropolskii, The Method of Averaging in NonLinear Mechanics, Naukova Dumka, Kiev, 1971. (Russian) 
[21] 
K. Nozaki and N. Bekky, Low dimensional chaos in a driven damped nonlinear Schrödinger equation, Physica D, 21 (1986), 381393. 
[22] 
M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, second ed. , in: Texts in Applied Mathematics, vol. 13, SpringerVerlag, New York, 2004. 
[23] 
L. Rosier and B. Y. Zhang, Global stabilization of the generalized Kortewegde Vries equation posed on a finite domain, SIAM Journal on Control and Optimization, 45 (2006), 927956. 
[24] 
I. Segal, Nonlinear semigroups, Annals of Mathematics, 78 (1963), 339364. 
[25] 
I. B. Simonenko, A justification of the method of averaging for abstract parabolic equations, (Russian) Dokl. Akad. Nauk SSSR, 191 (1970), 3334. 
[26]  
[27] 
R. Temam, Infinitedimensional Dynamical Systems in Mechanics and Physics, Second edition. Applied Mathematical Sciences, 68. SpringerVerlag, New York, 1997. 
[1] 
Benjamin B. Kennedy. A statedependent delay equation with negative feedback and "mildly unstable" rapidly oscillating periodic solutions. Discrete and Continuous Dynamical Systems  B, 2013, 18 (6) : 16331650. doi: 10.3934/dcdsb.2013.18.1633 
[2] 
Vitalii G. Kurbatov, Valentina I. Kuznetsova. On stability of functional differential equations with rapidly oscillating coefficients. Communications on Pure and Applied Analysis, 2018, 17 (1) : 267283. doi: 10.3934/cpaa.2018016 
[3] 
Walter Allegretto, Liqun Cao, Yanping Lin. Multiscale asymptotic expansion for second order parabolic equations with rapidly oscillating coefficients. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 543576. doi: 10.3934/dcds.2008.20.543 
[4] 
Fathi Dkhil, Angela Stevens. Traveling wave speeds in rapidly oscillating media. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 89108. doi: 10.3934/dcds.2009.25.89 
[5] 
Francesca Alessio, Vittorio Coti Zelati, Piero Montecchiari. Chaotic behavior of rapidly oscillating Lagrangian systems. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 687707. doi: 10.3934/dcds.2004.10.687 
[6] 
Grégoire Allaire, M. Vanninathan. Homogenization of the Schrödinger equation with a time oscillating potential. Discrete and Continuous Dynamical Systems  B, 2006, 6 (1) : 116. doi: 10.3934/dcdsb.2006.6.1 
[7] 
A. Pankov. Gap solitons in periodic discrete nonlinear Schrödinger equations II: A generalized Nehari manifold approach. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 419430. doi: 10.3934/dcds.2007.19.419 
[8] 
Türker Özsarı. Blowup of solutions of nonlinear Schrödinger equations with oscillating nonlinearities. Communications on Pure and Applied Analysis, 2019, 18 (1) : 539558. doi: 10.3934/cpaa.2019027 
[9] 
Kuanysh A. Bekmaganbetov, Gregory A. Chechkin, Vladimir V. Chepyzhov. Strong convergence of trajectory attractors for reaction–diffusion systems with random rapidly oscillating terms. Communications on Pure and Applied Analysis, 2020, 19 (5) : 24192443. doi: 10.3934/cpaa.2020106 
[10] 
Patrick Henning, Mario Ohlberger. The heterogeneous multiscale finite element method for advectiondiffusion problems with rapidly oscillating coefficients and large expected drift. Networks and Heterogeneous Media, 2010, 5 (4) : 711744. doi: 10.3934/nhm.2010.5.711 
[11] 
A. Carati. Center manifold of unstable periodic orbits of helium atom: numerical evidence. Discrete and Continuous Dynamical Systems  B, 2003, 3 (1) : 97104. doi: 10.3934/dcdsb.2003.3.97 
[12] 
Alexander M. Krasnosel'skii, Edward O'Grady, Alexei Pokrovskii, Dmitrii I. Rachinskii. Periodic canard trajectories with multiple segments following the unstable part of critical manifold. Discrete and Continuous Dynamical Systems  B, 2013, 18 (2) : 467482. doi: 10.3934/dcdsb.2013.18.467 
[13] 
Jason Murphy, Fabio Pusateri. Almost global existence for cubic nonlinear Schrödinger equations in one space dimension. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 20772102. doi: 10.3934/dcds.2017089 
[14] 
Naoufel Ben Abdallah, Yongyong Cai, Francois Castella, Florian Méhats. Second order averaging for the nonlinear Schrödinger equation with strongly anisotropic potential. Kinetic and Related Models, 2011, 4 (4) : 831856. doi: 10.3934/krm.2011.4.831 
[15] 
Benjamin Dodson. Improved almost Morawetz estimates for the cubic nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2011, 10 (1) : 127140. doi: 10.3934/cpaa.2011.10.127 
[16] 
Alp Eden, Elİf Kuz. Almost cubic nonlinear Schrödinger equation: Existence, uniqueness and scattering. Communications on Pure and Applied Analysis, 2009, 8 (6) : 18031823. doi: 10.3934/cpaa.2009.8.1803 
[17] 
Yingte Sun. Floquet solutions for the Schrödinger equation with fastoscillating quasiperiodic potentials. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 45314543. doi: 10.3934/dcds.2021047 
[18] 
Huifang Jia, Gongbao Li, Xiao Luo. Stable standing waves for cubic nonlinear Schrödinger systems with partial confinement. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 27392766. doi: 10.3934/dcds.2020148 
[19] 
Tibor Krisztin. A local unstable manifold for differential equations with statedependent delay. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 9931028. doi: 10.3934/dcds.2003.9.993 
[20] 
Alain Haraux. On the fast solution of evolution equations with a rapidly decaying source term. Mathematical Control and Related Fields, 2011, 1 (1) : 120. doi: 10.3934/mcrf.2011.1.1 
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]