Case 1 | Case 2 | |
$\overline{\tau}_{prod}(\infty)$ | 2.2357 | 2.2197 |
$\sigma^2(\tau_{prod}(\infty))$ | 0.0529 | 0.0466 |
In this paper, we focus on production network models based on ordinary and partial differential equations that are coupled to semi-Markovian failure rates for the processor capacities. This modeling approach allows for intermediate capacity states in the range of total breakdown to full capacity, where operating and down times might be arbitrarily distributed. The mathematical challenge is to combine the theory of semi-Markovian processes within the framework of conservation laws. We show the existence and uniqueness of such stochastic network solutions, present a suitable simulation method and explain the link to the common queueing theory. A variety of numerical examples emphasizes the characteristics of the proposed approach.
Citation: |
Table 1. Sample mean and variance of the production time
Case 1 | Case 2 | |
$\overline{\tau}_{prod}(\infty)$ | 2.2357 | 2.2197 |
$\sigma^2(\tau_{prod}(\infty))$ | 0.0529 | 0.0466 |
Table 2. Parameters of the network model with five processors
Processor e | 1 | 2 | 3 | 4 | 5 |
MTBF | 0.95 | $\infty$ | 0.85 | 1.9 | 0.95 |
MRT | 0.05 | 0 | 0.15 | 0.10 | 0.05 |
Table 3. Sample mean and variance of the network queue-load
$\alpha = \frac{1}{4}$ | $\alpha = 1$ | $\alpha = 4$ | |
$\overline{q^{net}(4)}$ | 1.3361 | 1.7391 | 2.8382 |
$\sigma^2(q^{net}(4))$ | 0.3278 | 1.2588 | 5.1694 |
D. Armbruster
, P. Degond
and C. Ringhofer
, A model for the dynamics of large queuing networks and supply chains, SIAM J. Appl. Math., 66 (2006)
, 896-920.
doi: 10.1137/040604625.![]() ![]() ![]() |
|
J. Banks, J. S. Carson, B. L. Nelson and D. M. Nicol, Discrete-Event System Simulation 5th edition, Pearson, 2010.
![]() |
|
C. D'Apice, S. Göttlich, M. Herty and B. Piccoli,
Modeling, Simulation, and Optimization of Supply Chains 1st edition, SIAM, Philadelphia, 2010.
doi: 10.1137/1.9780898717600.![]() ![]() ![]() |
|
C. D'Apice
, P. I. Kogut
and R. Manzo
, On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains, Netw. Heterog. Media, 9 (2014)
, 501-518.
doi: 10.3934/nhm.2014.9.501.![]() ![]() ![]() |
|
C. D'Apice
, R. Manzo
and B. Piccoli
, Modelling supply networks with partial differential equations, Quart. Appl. Math., 67 (2009)
, 419-440.
doi: 10.1090/S0033-569X-09-01129-1.![]() ![]() ![]() |
|
C. D'Apice
, R. Manzo
and B. Piccoli
, Existence of solutions to Cauchy problems for a mixed continuum-discrete model for supply chains and networks, J. Math. Anal. Appl., 362 (2010)
, 374-386.
doi: 10.1016/j.jmaa.2009.07.058.![]() ![]() ![]() |
|
C. D'Apice
, R. Manzo
and B. Piccoli
, Optimal input flows for a PDE-ODE model of supply chains, Commun. Math. Sci., 10 (2012)
, 1225-1240.
doi: 10.4310/CMS.2012.v10.n4.a10.![]() ![]() ![]() |
|
C. D'Apice
, R. Manzo
and B. Piccoli
, Numerical schemes for the optimal input flow of a supply chain, SIAM J. Numer. Anal., 51 (2013)
, 2634-2650.
doi: 10.1137/120889721.![]() ![]() ![]() |
|
M. H. A. Davis
, Piecewise-deterministic {M}arkov processes: A general class of nondiffusion stochastic models, J. Roy. Statist. Soc. Ser. B, 46 (1984)
, 353-388.
![]() ![]() |
|
P. Degond
and C. Ringhofer
, Stochastic dynamics of long supply chains with random breakdowns, SIAM J. Appl. Math., 68 (2007)
, 59-79.
doi: 10.1137/060674302.![]() ![]() ![]() |
|
L. Forestier-Coste
, S. Göttlich
and M. Herty
, Data-fitted second-order macroscopic production models, SIAM J. Appl. Math., 75 (2015)
, 999-1014.
doi: 10.1137/140989832.![]() ![]() ![]() |
|
D. T. Gillespie
, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Computational Phys., 22 (1976)
, 403-434.
doi: 10.1016/0021-9991(76)90041-3.![]() ![]() ![]() |
|
D. T. Gillespie
, Approximate accelerated stochastic simulation of chemically reacting systems, J. Chem. Phys., 115 (2001)
, 1716-1733.
doi: 10.1063/1.1378322.![]() ![]() |
|
S. Göttlich
, M. Herty
and A. Klar
, Network models for supply chains, Commun. Math. Sci., 3 (2005)
, 545-559.
doi: 10.4310/CMS.2005.v3.n4.a5.![]() ![]() ![]() |
|
S. Göttlich
, M. Herty
and C. Ringhofer
, Optimization of order policies in supply networks, European J. Oper. Res., 202 (2010)
, 456-465.
doi: 10.1016/j.ejor.2009.05.028.![]() ![]() ![]() |
|
S. Göttlich
, A. Klar
and S. Tiwari
, Complex material flow problems: A multi-scale model hierarchy and particle methods, J. Engrg. Math, 92 (2015)
, 15-29.
doi: 10.1007/s10665-014-9767-5.![]() ![]() ![]() |
|
S. Göttlich
, S. Martin
and T. Sickenberger
, Time-continuous production networks with random breakdowns, Netw. Heterog. Media, 6 (2011)
, 695-714.
doi: 10.3934/nhm.2011.6.695.![]() ![]() ![]() |
|
F. Grabski
, Semi-Markov failure rates processes, Appl. Math. Comput., 217 (2011)
, 9956-9965.
doi: 10.1016/j.amc.2011.04.055.![]() ![]() ![]() |
|
F. Grabski, Semi-Markov Processes: Applications in System Reliability and Maintenance, 1st edition, Elsevier, Amsterdam, 2015.
doi: 10.1007/978-1-4612-0873-0.![]() ![]() ![]() |
|
D. Gross, J. F. Shortle, J. M. Thompson and C. M. Harris, Fundamentals of Queueing Theory, 4th edition, John Wiley & Sons, Inc. , Hoboken, NJ, 2008.
doi: 10.1002/9781118625651.![]() ![]() ![]() |
|
B. Harlamov, Continuous Semi-{M}arkov Processes, 1st edition, ISTE, London; John Wiley & Sons, Inc. , Hoboken, NJ, 2008.
doi: 10.1002/9780470610923.![]() ![]() ![]() |
|
M. Kolonko, Stochastische Simulation, (German) [Stochastic Simulation], 1st edition, Vieweg+Teubner Verlag, Wiesbaden, 2008.
doi: 10.1007/978-3-8348-9290-4.![]() ![]() |
|
A. M. Lee, Applied Queueing Theory, Reprint edition, Macmillan [u. a. ], London [u. a. ], 1966.
doi: 10.1007/978-1-349-00273-3.![]() ![]() |
|
L. Lipsky, Queueing Theory, 2nd edition, Springer, New York, 2009.
doi: 10.1007/978-0-387-49706-8.![]() ![]() ![]() |
|
J. Medhi,
Stochastic Processes, 3rd edition, New Age Science, Tunbridge Wells, 2010.
![]() |
|
J. R. Norris, Markov Chains, Reprint edition, Cambridge University Press, Cambridge, 1998.
![]() ![]() |
|
R. Pyke
, Markov renewal processes: Definitions and preliminary properties, Ann. Math. Statist., 32 (1961)
, 1231-1242.
doi: 10.1214/aoms/1177704863.![]() ![]() ![]() |
General idea of a semi-Markov process
Sample path and its pseudo inverse
Comparison with
Comparison with
Comparison with
Comparison with
Graph representation of the CTMCs
Difference of the sampled mean an variance densities
Sampled mean and variance of the queue-loads
Sample mean and variance of the network outflow
Difference of the sample mean and variance densities
Sample mean and variance of the queue-loads
Sample mean and variance of the network outflow
Histogram of production times
Different pdf of the gamma distribution
erial network with five processors
Sample mean of the density in the exponential case
Sampled mean of the density with
Sampled mean and variance of the network outflow
Comparison of the sample mean and variance of the first processor capacity process
Comparison of the sample mean of the network outflow and the network queue-loads
Comparison of the sample variance of the network outflow and the network queue-loads
Comparison of the production time for 0.9 amount of goods