September  2017, 22(7): 2569-2586. doi: 10.3934/dcdsb.2017092

Backward compact attractors for non-autonomous Benjamin-Bona-Mahony equations on unbounded channels

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

Received  July 2016 Revised  August 2016 Published  March 2017

Fund Project: This work was supported by the Natural Science Foundation of China Grants 11571283

Backward compact dynamics is deduced for a non-autonomous Benjamin-Bona-Mahony (BBM) equation on an unbounded 3D-channel. A backward compact attractor is defined by a time-dependent family of backward compact, invariant and pullback attracting sets. The theoretical existence result for such an attractor is derived from the backward flattening property, and this property is proved to be equivalent to the backward asymptotic compactness in a uniformly convex Banach space. Finally, it is shown that the BBM equation has a backward compact attractor in a Sobolev space under some suitable assumptions, such as, backward translation boundedness and backward small-tail. Both spectrum decomposition and cut-off technique are used to give all required backward uniform estimates.

Citation: Yangrong Li, Renhai Wang, Jinyan Yin. Backward compact attractors for non-autonomous Benjamin-Bona-Mahony equations on unbounded channels. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2569-2586. doi: 10.3934/dcdsb.2017092
References:
[1]

A. Adili and B. Wang, Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing, Discrete Contin. Dyn. Syst. Series B, 18 (2013), 643-666.  doi: 10.3934/dcdsb.2013.18.643.  Google Scholar

[2]

A. Adili and B. Wang, Random attractors for non-autonomous stochastic FitzHugh-Nagumo systems with multiplicative noise, Discrete Contin. Dyn. Syst. SI, (2013), 1-10.  doi: 10.3934/proc.2013.2013.1.  Google Scholar

[3]

T.B. BenjaminJ.L. Bona and J.J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. Lond., 272 (1972), 47-78.  doi: 10.1098/rsta.1972.0032.  Google Scholar

[4]

T. CaraballoA.N. CarvalhoJ.A. Langa and F. Rivero, Existence of pullback attractors for pullback asymptotically compact processes, Nonlinear Anal, 72 (2010), 1967-1976.  doi: 10.1016/j.na.2009.09.037.  Google Scholar

[5]

T. CaraballoG. Lukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal, 64 (2006), 484-498.  doi: 10.1016/j.na.2005.03.111.  Google Scholar

[6]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-dimensional Non-autonomous Dynamical Systems Appl. Math. Sciences, Springer, 182,2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[7]

A.O. CelebiV.K. Kalantarov and M. Polat, Attractors for the generalized Benjamin-Bona-Mahony equation, J. Differ. Equ., 157 (1999), 439-451.  doi: 10.1006/jdeq.1999.3634.  Google Scholar

[8]

H.Y. CuiJ.A. Langa and Y.R. Li, Regularity and structure of pullback attractors for reaction-diffusion type systems without uniqueness, Nonlinear Anal, 140 (2016), 208-235.  doi: 10.1016/j.na.2016.03.012.  Google Scholar

[9]

K. Deimling, Nonlinear Functional Analysis Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7.  Google Scholar

[10]

J.R. Kang, Attractors for autonomous and nonautonomous 3D Benjamin-Bona-Mahony equations, Appl. Math. Comput., 274 (2016), 343-352.  doi: 10.1016/j.amc.2015.10.086.  Google Scholar

[11]

P.E. Kloeden and J.A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond, 463 (2007), 163-181.  doi: 10.1098/rspa.2006.1753.  Google Scholar

[12]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems 176, American Mathematical Society, Providence, 2011. doi: 10.1090/surv/176.  Google Scholar

[13]

A. Krause and B.X. Wang, Pullback attractors of non-autonomous stochastic degenerate parabolic equations on unbounded domains, J. Math. Anal. Appl., 417 (2014), 1018-1038.  doi: 10.1016/j.jmaa.2014.03.037.  Google Scholar

[14]

Y.R. LiA.H. Gu and J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J. Differ. Equ., 258 (2015), 504-534.  doi: 10.1016/j.jde.2014.09.021.  Google Scholar

[15]

Y.R. Li and B.L. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differ. Equ., 245 (2008), 1775-1800.  doi: 10.1016/j.jde.2008.06.031.  Google Scholar

[16]

Y.R. Li and J.Y. Yin, A modified proof of pullback attractors in a Sobolev space for stochastic FitzHugh-Nagumo equations, Disrete Contin. Dyn. Syst. Series B, 21 (2016), 1203-1223.  doi: 10.3934/dcdsb.2016.21.1203.  Google Scholar

[17]

G. Lukaszewicz, On pullback attractors in $H^1_0$ for nonautonomous reaction-diffusion equations, International J. Bifurcation and Chaos, 20 (2010), 2637-2644.  doi: 10.1142/S0218127410027258.  Google Scholar

[18]

Q.F. MaS.H. Wang and C.K. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana Univ. Math. J, 51 (2002), 1541-1559.  doi: 10.1512/iumj.2002.51.2255.  Google Scholar

[19]

L.A. Medeiros and G. Perla Menzala, Existence and uniqueness for periodic solutions of the Benjamin-Bona-Mahony equation, SIAM J. Math. Anal, 8 (1977), 792-799.  doi: 10.1137/0508062.  Google Scholar

[20]

L. Rosier and B.Y. Zhang, Unique continuation property and control for the Benjamin-Bona-Mahony equation on a periodic domain, J. Differ. Equ., 254 (2013), 141-178.  doi: 10.1016/j.jde.2012.08.014.  Google Scholar

[21]

M. Stanislavova, On the global attractor for the damped Benjamin-Bona-Mahony equation, Disrete Continu. Dyn. Syst., 35 (2005), 824-832.   Google Scholar

[22]

M. StanislavovaA. Stefanow and B. Wang, Asymptotic smoothing and attractors for the generalized Benjamin-Bona-Mahony equation on $R^{3}$, J. Differ. Equ., 219 (2005), 451-483.  doi: 10.1016/j.jde.2005.08.004.  Google Scholar

[23]

A.S. de Suzzoni, Continuity of the flow of the Benjamin-Bona-Mahony equation on probability measures, Disrete Continu. Dyn. Syst., 35 (2015), 2905-2920.  doi: 10.3934/dcds.2015.35.2905.  Google Scholar

[24]

B. Wang, Random attractors for atochastic Benjamin-Bona-Mahony equation on unbounded Domains, J. Differ. Equ., 246 (2009), 2506-2537.  doi: 10.1016/j.jde.2008.10.012.  Google Scholar

[25]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Disrete Continu. Dyn. Syst., 34 (2014), 269-300.  doi: 10.3934/dcds.2014.34.269.  Google Scholar

[26]

B. Wang, Regularity of attractors for the Benjamin-Bona-Mahony equation, J. Phys. A, 31 (1998), 7635-7645.  doi: 10.1088/0305-4470/31/37/021.  Google Scholar

[27]

B. Wang, Strong attractors for the Benjamin-Bona-Mahony equation, Appl. Math. Lett, 10 (1997), 23-28.  doi: 10.1016/S0893-9659(97)00005-0.  Google Scholar

[28]

B. WangD. W. Fussner and C. Bi, Existence of global attractors for the Benjamin-Bona-Mahony equation in unbounded domains, J. Phys. A, 40 (2007), 10491-10504.  doi: 10.1088/1751-8113/40/34/007.  Google Scholar

[29]

B. Wang and W. Yang, Finite dimensional behaviour for the Benjamin-Bona-Mahony equation, J. Phys. A, 30 (1997), 4877-4885.  doi: 10.1088/0305-4470/30/13/035.  Google Scholar

[30]

Y. WangC. Zhong and S. Zhou, Pullback attractors of nonautonomous dynamical systems, Disrete Continu. Dyn. Syst., 16 (2006), 587-614.  doi: 10.3934/dcds.2006.16.587.  Google Scholar

show all references

References:
[1]

A. Adili and B. Wang, Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing, Discrete Contin. Dyn. Syst. Series B, 18 (2013), 643-666.  doi: 10.3934/dcdsb.2013.18.643.  Google Scholar

[2]

A. Adili and B. Wang, Random attractors for non-autonomous stochastic FitzHugh-Nagumo systems with multiplicative noise, Discrete Contin. Dyn. Syst. SI, (2013), 1-10.  doi: 10.3934/proc.2013.2013.1.  Google Scholar

[3]

T.B. BenjaminJ.L. Bona and J.J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. Lond., 272 (1972), 47-78.  doi: 10.1098/rsta.1972.0032.  Google Scholar

[4]

T. CaraballoA.N. CarvalhoJ.A. Langa and F. Rivero, Existence of pullback attractors for pullback asymptotically compact processes, Nonlinear Anal, 72 (2010), 1967-1976.  doi: 10.1016/j.na.2009.09.037.  Google Scholar

[5]

T. CaraballoG. Lukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal, 64 (2006), 484-498.  doi: 10.1016/j.na.2005.03.111.  Google Scholar

[6]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-dimensional Non-autonomous Dynamical Systems Appl. Math. Sciences, Springer, 182,2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[7]

A.O. CelebiV.K. Kalantarov and M. Polat, Attractors for the generalized Benjamin-Bona-Mahony equation, J. Differ. Equ., 157 (1999), 439-451.  doi: 10.1006/jdeq.1999.3634.  Google Scholar

[8]

H.Y. CuiJ.A. Langa and Y.R. Li, Regularity and structure of pullback attractors for reaction-diffusion type systems without uniqueness, Nonlinear Anal, 140 (2016), 208-235.  doi: 10.1016/j.na.2016.03.012.  Google Scholar

[9]

K. Deimling, Nonlinear Functional Analysis Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7.  Google Scholar

[10]

J.R. Kang, Attractors for autonomous and nonautonomous 3D Benjamin-Bona-Mahony equations, Appl. Math. Comput., 274 (2016), 343-352.  doi: 10.1016/j.amc.2015.10.086.  Google Scholar

[11]

P.E. Kloeden and J.A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond, 463 (2007), 163-181.  doi: 10.1098/rspa.2006.1753.  Google Scholar

[12]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems 176, American Mathematical Society, Providence, 2011. doi: 10.1090/surv/176.  Google Scholar

[13]

A. Krause and B.X. Wang, Pullback attractors of non-autonomous stochastic degenerate parabolic equations on unbounded domains, J. Math. Anal. Appl., 417 (2014), 1018-1038.  doi: 10.1016/j.jmaa.2014.03.037.  Google Scholar

[14]

Y.R. LiA.H. Gu and J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J. Differ. Equ., 258 (2015), 504-534.  doi: 10.1016/j.jde.2014.09.021.  Google Scholar

[15]

Y.R. Li and B.L. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differ. Equ., 245 (2008), 1775-1800.  doi: 10.1016/j.jde.2008.06.031.  Google Scholar

[16]

Y.R. Li and J.Y. Yin, A modified proof of pullback attractors in a Sobolev space for stochastic FitzHugh-Nagumo equations, Disrete Contin. Dyn. Syst. Series B, 21 (2016), 1203-1223.  doi: 10.3934/dcdsb.2016.21.1203.  Google Scholar

[17]

G. Lukaszewicz, On pullback attractors in $H^1_0$ for nonautonomous reaction-diffusion equations, International J. Bifurcation and Chaos, 20 (2010), 2637-2644.  doi: 10.1142/S0218127410027258.  Google Scholar

[18]

Q.F. MaS.H. Wang and C.K. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana Univ. Math. J, 51 (2002), 1541-1559.  doi: 10.1512/iumj.2002.51.2255.  Google Scholar

[19]

L.A. Medeiros and G. Perla Menzala, Existence and uniqueness for periodic solutions of the Benjamin-Bona-Mahony equation, SIAM J. Math. Anal, 8 (1977), 792-799.  doi: 10.1137/0508062.  Google Scholar

[20]

L. Rosier and B.Y. Zhang, Unique continuation property and control for the Benjamin-Bona-Mahony equation on a periodic domain, J. Differ. Equ., 254 (2013), 141-178.  doi: 10.1016/j.jde.2012.08.014.  Google Scholar

[21]

M. Stanislavova, On the global attractor for the damped Benjamin-Bona-Mahony equation, Disrete Continu. Dyn. Syst., 35 (2005), 824-832.   Google Scholar

[22]

M. StanislavovaA. Stefanow and B. Wang, Asymptotic smoothing and attractors for the generalized Benjamin-Bona-Mahony equation on $R^{3}$, J. Differ. Equ., 219 (2005), 451-483.  doi: 10.1016/j.jde.2005.08.004.  Google Scholar

[23]

A.S. de Suzzoni, Continuity of the flow of the Benjamin-Bona-Mahony equation on probability measures, Disrete Continu. Dyn. Syst., 35 (2015), 2905-2920.  doi: 10.3934/dcds.2015.35.2905.  Google Scholar

[24]

B. Wang, Random attractors for atochastic Benjamin-Bona-Mahony equation on unbounded Domains, J. Differ. Equ., 246 (2009), 2506-2537.  doi: 10.1016/j.jde.2008.10.012.  Google Scholar

[25]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Disrete Continu. Dyn. Syst., 34 (2014), 269-300.  doi: 10.3934/dcds.2014.34.269.  Google Scholar

[26]

B. Wang, Regularity of attractors for the Benjamin-Bona-Mahony equation, J. Phys. A, 31 (1998), 7635-7645.  doi: 10.1088/0305-4470/31/37/021.  Google Scholar

[27]

B. Wang, Strong attractors for the Benjamin-Bona-Mahony equation, Appl. Math. Lett, 10 (1997), 23-28.  doi: 10.1016/S0893-9659(97)00005-0.  Google Scholar

[28]

B. WangD. W. Fussner and C. Bi, Existence of global attractors for the Benjamin-Bona-Mahony equation in unbounded domains, J. Phys. A, 40 (2007), 10491-10504.  doi: 10.1088/1751-8113/40/34/007.  Google Scholar

[29]

B. Wang and W. Yang, Finite dimensional behaviour for the Benjamin-Bona-Mahony equation, J. Phys. A, 30 (1997), 4877-4885.  doi: 10.1088/0305-4470/30/13/035.  Google Scholar

[30]

Y. WangC. Zhong and S. Zhou, Pullback attractors of nonautonomous dynamical systems, Disrete Continu. Dyn. Syst., 16 (2006), 587-614.  doi: 10.3934/dcds.2006.16.587.  Google Scholar

[1]

Yangrong Li, Shuang Yang. Backward compact and periodic random attractors for non-autonomous sine-Gordon equations with multiplicative noise. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1155-1175. doi: 10.3934/cpaa.2019056

[2]

Peng Gao. Unique continuation property for stochastic nonclassical diffusion equations and stochastic linearized Benjamin-Bona-Mahony equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2493-2510. doi: 10.3934/dcdsb.2018262

[3]

Flank D. M. Bezerra, Vera L. Carbone, Marcelo J. D. Nascimento, Karina Schiabel. Pullback attractors for a class of non-autonomous thermoelastic plate systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3553-3571. doi: 10.3934/dcdsb.2017214

[4]

Jaime Angulo Pava, Carlos Banquet, Márcia Scialom. Stability for the modified and fourth-order Benjamin-Bona-Mahony equations. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 851-871. doi: 10.3934/dcds.2011.30.851

[5]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[6]

Peter E. Kloeden, Jacson Simsen. Pullback attractors for non-autonomous evolution equations with spatially variable exponents. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2543-2557. doi: 10.3934/cpaa.2014.13.2543

[7]

Zhijian Yang, Yanan Li. Upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4899-4912. doi: 10.3934/dcdsb.2019036

[8]

María Anguiano, Tomás Caraballo, José Real, José Valero. Pullback attractors for reaction-diffusion equations in some unbounded domains with an $H^{-1}$-valued non-autonomous forcing term and without uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 307-326. doi: 10.3934/dcdsb.2010.14.307

[9]

Julia García-Luengo, Pedro Marín-Rubio, José Real, James C. Robinson. Pullback attractors for the non-autonomous 2D Navier--Stokes equations for minimally regular forcing. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 203-227. doi: 10.3934/dcds.2014.34.203

[10]

Bo You, Chengkui Zhong, Fang Li. Pullback attractors for three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1213-1226. doi: 10.3934/dcdsb.2014.19.1213

[11]

Lu Yang, Meihua Yang, Peter E. Kloeden. Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2635-2651. doi: 10.3934/dcdsb.2012.17.2635

[12]

Fang Li, Bo You. Pullback exponential attractors for the three dimensional non-autonomous Navier-Stokes equations with nonlinear damping. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 55-80. doi: 10.3934/dcdsb.2019172

[13]

Anne-Sophie de Suzzoni. Continuity of the flow of the Benjamin-Bona-Mahony equation on probability measures. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2905-2920. doi: 10.3934/dcds.2015.35.2905

[14]

Milena Stanislavova. On the global attractor for the damped Benjamin-Bona-Mahony equation. Conference Publications, 2005, 2005 (Special) : 824-832. doi: 10.3934/proc.2005.2005.824

[15]

Khaled El Dika. Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 583-622. doi: 10.3934/dcds.2005.13.583

[16]

Hong Lu, Jiangang Qi, Bixiang Wang, Mingji Zhang. Random attractors for non-autonomous fractional stochastic parabolic equations on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 683-706. doi: 10.3934/dcds.2019028

[17]

Yangrong Li, Renhai Wang, Lianbing She. Backward controllability of pullback trajectory attractors with applications to multi-valued Jeffreys-Oldroyd equations. Evolution Equations & Control Theory, 2018, 7 (4) : 617-637. doi: 10.3934/eect.2018030

[18]

Jong Yeoul Park, Jae Ug Jeong. Pullback attractors for a $2D$-non-autonomous incompressible non-Newtonian fluid with variable delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2687-2702. doi: 10.3934/dcdsb.2016068

[19]

Michael Zgurovsky, Mark Gluzman, Nataliia Gorban, Pavlo Kasyanov, Liliia Paliichuk, Olha Khomenko. Uniform global attractors for non-autonomous dissipative dynamical systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 2053-2065. doi: 10.3934/dcdsb.2017120

[20]

Ahmed Y. Abdallah, Rania T. Wannan. Second order non-autonomous lattice systems and their uniform attractors. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1827-1846. doi: 10.3934/cpaa.2019085

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (18)
  • HTML views (21)
  • Cited by (5)

Other articles
by authors

[Back to Top]