September  2017, 22(7): 2569-2586. doi: 10.3934/dcdsb.2017092

Backward compact attractors for non-autonomous Benjamin-Bona-Mahony equations on unbounded channels

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

Received  July 2016 Revised  August 2016 Published  March 2017

Fund Project: This work was supported by the Natural Science Foundation of China Grants 11571283.

Backward compact dynamics is deduced for a non-autonomous Benjamin-Bona-Mahony (BBM) equation on an unbounded 3D-channel. A backward compact attractor is defined by a time-dependent family of backward compact, invariant and pullback attracting sets. The theoretical existence result for such an attractor is derived from the backward flattening property, and this property is proved to be equivalent to the backward asymptotic compactness in a uniformly convex Banach space. Finally, it is shown that the BBM equation has a backward compact attractor in a Sobolev space under some suitable assumptions, such as, backward translation boundedness and backward small-tail. Both spectrum decomposition and cut-off technique are used to give all required backward uniform estimates.

Citation: Yangrong Li, Renhai Wang, Jinyan Yin. Backward compact attractors for non-autonomous Benjamin-Bona-Mahony equations on unbounded channels. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2569-2586. doi: 10.3934/dcdsb.2017092
References:
[1]

A. Adili and B. Wang, Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing, Discrete Contin. Dyn. Syst. Series B, 18 (2013), 643-666.  doi: 10.3934/dcdsb.2013.18.643.  Google Scholar

[2]

A. Adili and B. Wang, Random attractors for non-autonomous stochastic FitzHugh-Nagumo systems with multiplicative noise, Discrete Contin. Dyn. Syst. SI, (2013), 1-10.  doi: 10.3934/proc.2013.2013.1.  Google Scholar

[3]

T.B. BenjaminJ.L. Bona and J.J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. Lond., 272 (1972), 47-78.  doi: 10.1098/rsta.1972.0032.  Google Scholar

[4]

T. CaraballoA.N. CarvalhoJ.A. Langa and F. Rivero, Existence of pullback attractors for pullback asymptotically compact processes, Nonlinear Anal, 72 (2010), 1967-1976.  doi: 10.1016/j.na.2009.09.037.  Google Scholar

[5]

T. CaraballoG. Lukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal, 64 (2006), 484-498.  doi: 10.1016/j.na.2005.03.111.  Google Scholar

[6]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-dimensional Non-autonomous Dynamical Systems Appl. Math. Sciences, Springer, 182,2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[7]

A.O. CelebiV.K. Kalantarov and M. Polat, Attractors for the generalized Benjamin-Bona-Mahony equation, J. Differ. Equ., 157 (1999), 439-451.  doi: 10.1006/jdeq.1999.3634.  Google Scholar

[8]

H.Y. CuiJ.A. Langa and Y.R. Li, Regularity and structure of pullback attractors for reaction-diffusion type systems without uniqueness, Nonlinear Anal, 140 (2016), 208-235.  doi: 10.1016/j.na.2016.03.012.  Google Scholar

[9]

K. Deimling, Nonlinear Functional Analysis Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7.  Google Scholar

[10]

J.R. Kang, Attractors for autonomous and nonautonomous 3D Benjamin-Bona-Mahony equations, Appl. Math. Comput., 274 (2016), 343-352.  doi: 10.1016/j.amc.2015.10.086.  Google Scholar

[11]

P.E. Kloeden and J.A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond, 463 (2007), 163-181.  doi: 10.1098/rspa.2006.1753.  Google Scholar

[12]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems 176, American Mathematical Society, Providence, 2011. doi: 10.1090/surv/176.  Google Scholar

[13]

A. Krause and B.X. Wang, Pullback attractors of non-autonomous stochastic degenerate parabolic equations on unbounded domains, J. Math. Anal. Appl., 417 (2014), 1018-1038.  doi: 10.1016/j.jmaa.2014.03.037.  Google Scholar

[14]

Y.R. LiA.H. Gu and J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J. Differ. Equ., 258 (2015), 504-534.  doi: 10.1016/j.jde.2014.09.021.  Google Scholar

[15]

Y.R. Li and B.L. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differ. Equ., 245 (2008), 1775-1800.  doi: 10.1016/j.jde.2008.06.031.  Google Scholar

[16]

Y.R. Li and J.Y. Yin, A modified proof of pullback attractors in a Sobolev space for stochastic FitzHugh-Nagumo equations, Disrete Contin. Dyn. Syst. Series B, 21 (2016), 1203-1223.  doi: 10.3934/dcdsb.2016.21.1203.  Google Scholar

[17]

G. Lukaszewicz, On pullback attractors in $H^1_0$ for nonautonomous reaction-diffusion equations, International J. Bifurcation and Chaos, 20 (2010), 2637-2644.  doi: 10.1142/S0218127410027258.  Google Scholar

[18]

Q.F. MaS.H. Wang and C.K. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana Univ. Math. J, 51 (2002), 1541-1559.  doi: 10.1512/iumj.2002.51.2255.  Google Scholar

[19]

L.A. Medeiros and G. Perla Menzala, Existence and uniqueness for periodic solutions of the Benjamin-Bona-Mahony equation, SIAM J. Math. Anal, 8 (1977), 792-799.  doi: 10.1137/0508062.  Google Scholar

[20]

L. Rosier and B.Y. Zhang, Unique continuation property and control for the Benjamin-Bona-Mahony equation on a periodic domain, J. Differ. Equ., 254 (2013), 141-178.  doi: 10.1016/j.jde.2012.08.014.  Google Scholar

[21]

M. Stanislavova, On the global attractor for the damped Benjamin-Bona-Mahony equation, Disrete Continu. Dyn. Syst., 35 (2005), 824-832.   Google Scholar

[22]

M. StanislavovaA. Stefanow and B. Wang, Asymptotic smoothing and attractors for the generalized Benjamin-Bona-Mahony equation on $R^{3}$, J. Differ. Equ., 219 (2005), 451-483.  doi: 10.1016/j.jde.2005.08.004.  Google Scholar

[23]

A.S. de Suzzoni, Continuity of the flow of the Benjamin-Bona-Mahony equation on probability measures, Disrete Continu. Dyn. Syst., 35 (2015), 2905-2920.  doi: 10.3934/dcds.2015.35.2905.  Google Scholar

[24]

B. Wang, Random attractors for atochastic Benjamin-Bona-Mahony equation on unbounded Domains, J. Differ. Equ., 246 (2009), 2506-2537.  doi: 10.1016/j.jde.2008.10.012.  Google Scholar

[25]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Disrete Continu. Dyn. Syst., 34 (2014), 269-300.  doi: 10.3934/dcds.2014.34.269.  Google Scholar

[26]

B. Wang, Regularity of attractors for the Benjamin-Bona-Mahony equation, J. Phys. A, 31 (1998), 7635-7645.  doi: 10.1088/0305-4470/31/37/021.  Google Scholar

[27]

B. Wang, Strong attractors for the Benjamin-Bona-Mahony equation, Appl. Math. Lett, 10 (1997), 23-28.  doi: 10.1016/S0893-9659(97)00005-0.  Google Scholar

[28]

B. WangD. W. Fussner and C. Bi, Existence of global attractors for the Benjamin-Bona-Mahony equation in unbounded domains, J. Phys. A, 40 (2007), 10491-10504.  doi: 10.1088/1751-8113/40/34/007.  Google Scholar

[29]

B. Wang and W. Yang, Finite dimensional behaviour for the Benjamin-Bona-Mahony equation, J. Phys. A, 30 (1997), 4877-4885.  doi: 10.1088/0305-4470/30/13/035.  Google Scholar

[30]

Y. WangC. Zhong and S. Zhou, Pullback attractors of nonautonomous dynamical systems, Disrete Continu. Dyn. Syst., 16 (2006), 587-614.  doi: 10.3934/dcds.2006.16.587.  Google Scholar

show all references

References:
[1]

A. Adili and B. Wang, Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing, Discrete Contin. Dyn. Syst. Series B, 18 (2013), 643-666.  doi: 10.3934/dcdsb.2013.18.643.  Google Scholar

[2]

A. Adili and B. Wang, Random attractors for non-autonomous stochastic FitzHugh-Nagumo systems with multiplicative noise, Discrete Contin. Dyn. Syst. SI, (2013), 1-10.  doi: 10.3934/proc.2013.2013.1.  Google Scholar

[3]

T.B. BenjaminJ.L. Bona and J.J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. Lond., 272 (1972), 47-78.  doi: 10.1098/rsta.1972.0032.  Google Scholar

[4]

T. CaraballoA.N. CarvalhoJ.A. Langa and F. Rivero, Existence of pullback attractors for pullback asymptotically compact processes, Nonlinear Anal, 72 (2010), 1967-1976.  doi: 10.1016/j.na.2009.09.037.  Google Scholar

[5]

T. CaraballoG. Lukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal, 64 (2006), 484-498.  doi: 10.1016/j.na.2005.03.111.  Google Scholar

[6]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-dimensional Non-autonomous Dynamical Systems Appl. Math. Sciences, Springer, 182,2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[7]

A.O. CelebiV.K. Kalantarov and M. Polat, Attractors for the generalized Benjamin-Bona-Mahony equation, J. Differ. Equ., 157 (1999), 439-451.  doi: 10.1006/jdeq.1999.3634.  Google Scholar

[8]

H.Y. CuiJ.A. Langa and Y.R. Li, Regularity and structure of pullback attractors for reaction-diffusion type systems without uniqueness, Nonlinear Anal, 140 (2016), 208-235.  doi: 10.1016/j.na.2016.03.012.  Google Scholar

[9]

K. Deimling, Nonlinear Functional Analysis Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7.  Google Scholar

[10]

J.R. Kang, Attractors for autonomous and nonautonomous 3D Benjamin-Bona-Mahony equations, Appl. Math. Comput., 274 (2016), 343-352.  doi: 10.1016/j.amc.2015.10.086.  Google Scholar

[11]

P.E. Kloeden and J.A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond, 463 (2007), 163-181.  doi: 10.1098/rspa.2006.1753.  Google Scholar

[12]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems 176, American Mathematical Society, Providence, 2011. doi: 10.1090/surv/176.  Google Scholar

[13]

A. Krause and B.X. Wang, Pullback attractors of non-autonomous stochastic degenerate parabolic equations on unbounded domains, J. Math. Anal. Appl., 417 (2014), 1018-1038.  doi: 10.1016/j.jmaa.2014.03.037.  Google Scholar

[14]

Y.R. LiA.H. Gu and J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J. Differ. Equ., 258 (2015), 504-534.  doi: 10.1016/j.jde.2014.09.021.  Google Scholar

[15]

Y.R. Li and B.L. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differ. Equ., 245 (2008), 1775-1800.  doi: 10.1016/j.jde.2008.06.031.  Google Scholar

[16]

Y.R. Li and J.Y. Yin, A modified proof of pullback attractors in a Sobolev space for stochastic FitzHugh-Nagumo equations, Disrete Contin. Dyn. Syst. Series B, 21 (2016), 1203-1223.  doi: 10.3934/dcdsb.2016.21.1203.  Google Scholar

[17]

G. Lukaszewicz, On pullback attractors in $H^1_0$ for nonautonomous reaction-diffusion equations, International J. Bifurcation and Chaos, 20 (2010), 2637-2644.  doi: 10.1142/S0218127410027258.  Google Scholar

[18]

Q.F. MaS.H. Wang and C.K. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana Univ. Math. J, 51 (2002), 1541-1559.  doi: 10.1512/iumj.2002.51.2255.  Google Scholar

[19]

L.A. Medeiros and G. Perla Menzala, Existence and uniqueness for periodic solutions of the Benjamin-Bona-Mahony equation, SIAM J. Math. Anal, 8 (1977), 792-799.  doi: 10.1137/0508062.  Google Scholar

[20]

L. Rosier and B.Y. Zhang, Unique continuation property and control for the Benjamin-Bona-Mahony equation on a periodic domain, J. Differ. Equ., 254 (2013), 141-178.  doi: 10.1016/j.jde.2012.08.014.  Google Scholar

[21]

M. Stanislavova, On the global attractor for the damped Benjamin-Bona-Mahony equation, Disrete Continu. Dyn. Syst., 35 (2005), 824-832.   Google Scholar

[22]

M. StanislavovaA. Stefanow and B. Wang, Asymptotic smoothing and attractors for the generalized Benjamin-Bona-Mahony equation on $R^{3}$, J. Differ. Equ., 219 (2005), 451-483.  doi: 10.1016/j.jde.2005.08.004.  Google Scholar

[23]

A.S. de Suzzoni, Continuity of the flow of the Benjamin-Bona-Mahony equation on probability measures, Disrete Continu. Dyn. Syst., 35 (2015), 2905-2920.  doi: 10.3934/dcds.2015.35.2905.  Google Scholar

[24]

B. Wang, Random attractors for atochastic Benjamin-Bona-Mahony equation on unbounded Domains, J. Differ. Equ., 246 (2009), 2506-2537.  doi: 10.1016/j.jde.2008.10.012.  Google Scholar

[25]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Disrete Continu. Dyn. Syst., 34 (2014), 269-300.  doi: 10.3934/dcds.2014.34.269.  Google Scholar

[26]

B. Wang, Regularity of attractors for the Benjamin-Bona-Mahony equation, J. Phys. A, 31 (1998), 7635-7645.  doi: 10.1088/0305-4470/31/37/021.  Google Scholar

[27]

B. Wang, Strong attractors for the Benjamin-Bona-Mahony equation, Appl. Math. Lett, 10 (1997), 23-28.  doi: 10.1016/S0893-9659(97)00005-0.  Google Scholar

[28]

B. WangD. W. Fussner and C. Bi, Existence of global attractors for the Benjamin-Bona-Mahony equation in unbounded domains, J. Phys. A, 40 (2007), 10491-10504.  doi: 10.1088/1751-8113/40/34/007.  Google Scholar

[29]

B. Wang and W. Yang, Finite dimensional behaviour for the Benjamin-Bona-Mahony equation, J. Phys. A, 30 (1997), 4877-4885.  doi: 10.1088/0305-4470/30/13/035.  Google Scholar

[30]

Y. WangC. Zhong and S. Zhou, Pullback attractors of nonautonomous dynamical systems, Disrete Continu. Dyn. Syst., 16 (2006), 587-614.  doi: 10.3934/dcds.2006.16.587.  Google Scholar

[1]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[2]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[3]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[4]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[5]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[6]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[7]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[8]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[9]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[10]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[11]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[12]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[13]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[14]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[15]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[16]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[17]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[18]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[19]

Shiqi Ma. On recent progress of single-realization recoveries of random schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[20]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (58)
  • HTML views (62)
  • Cited by (8)

Other articles
by authors

[Back to Top]