August  2017, 22(6): 2207-2231. doi: 10.3934/dcdsb.2017093

Bility and traveling wavefronts for a convolution model of mistletoes and birds with nonlocal diffusion

School of Mathematics, South China Normal University, Guangzhou, Guangdong 510631, China

Received  December 2014 Revised  June 2017 Published  March 2017

Fund Project: Supported by the NSF of China (11171120) and the Natural Science Foundation of Guangdong Province (2016A030313426).

A convolution model of mistletoes and birds with nonlocal diffusion is considered in this paper. We first consider the stability of the constant steady states of the model by linearized method, and then the existence of traveling solutions. The main aim of this article is to challenge the hardness lying in the construction of upper-lowers for wave profile system. With the help of an additional condition, we at last obtain a pair of upper-lower solutions. A constant $c_{*}>0$ is obtained such that traveling wavefronts exist for $c\geq c_{*}$. Amongst the construction, we take advantage of the relation between two components of principle eigenvector for the linearized system to control the two components of upper solution. The method seems novel. Some simulations and discussions are given to illustrate the applications of our main results and the effect of parameters on $c_{*}$. A comparison for $c_{*}$ is also given with two different kernel functions.

Citation: Huimin Liang, Peixuan Weng, Yanling Tian. Bility and traveling wavefronts for a convolution model of mistletoes and birds with nonlocal diffusion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2207-2231. doi: 10.3934/dcdsb.2017093
References:
[1]

F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 165, 2010. Google Scholar

[2]

O. Diekmann, Thresholds and traveling waves for the geographical spread of infection, J. Math. Biol., 6 (1978), 109-130.   Google Scholar

[3]

J. Fang and X. -Q. Zhao, Traveling waves for monotone semiflows with weak compactness, SIAM J. Math. Anal., 46 (2014), 3678-3704.   Google Scholar

[4]

P. C. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, in Trends in Nonlinear Analysis, Springer, Berlin, (2003), 153-191. Google Scholar

[5]

B. Gilding and R. Kersner, Traveling Waves in Nonlinear Diffusion Convection Reaction, Basel: Birkhäuser Verlag, 2004. Google Scholar

[6]

S. A. Gourley and J. H. Wu, Delayed nonlocal diffusive systems in biological invasion and disease spread, Nonlinear Dynamic and Evolution Equations, Fields Inst. Commun. Amer. Math. Soc. Providence, RI, 48 (2006), 137-200.   Google Scholar

[7]

J. K. Hale, Theory of Functional Differential Equations, Applied Mathematical Sciences, 3, Springer-Verlag, New York-Heidelberg, 1977. Google Scholar

[8]

V. HutsonS. MartinezK. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.   Google Scholar

[9]

M. KotM. A. Lewis and P. Van den Driessche, Dispersal data and the spread of invading organisms, Ecology, 77 (1996), 2027-2042.   Google Scholar

[10] J. Kuijt, The Biology of Parasitic Flowering Plants, University of California Press, Berkeley, 1969.   Google Scholar
[11]

J. D. Murray, Mathematical Biology: Ⅰ and Ⅱ, Spriner-Verlag, New York, 2002. Google Scholar

[12]

S. X. PanW. T. Li and G. Lin, Travelling wave fronts in nonlocal delayed reaction-diffusion systems and applications, Z. Angew. Math. Phys., 60 (2009), 377-392.   Google Scholar

[13]

J. Radciliffe and L. Rass, Spatial deterministic epidemics, Mathematical Surveys and Monographs. Amer. Math. Soc. Providence, RI, 102, 2003. Google Scholar

[14]

W. X. Shen, Traveling waves in diffusive random media, J. Dynam. Differential Equations, 16 (2004), 1011-1060.   Google Scholar

[15]

N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice, Oxford Uinversity Press, 1997. Google Scholar

[16]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 41,1995. Google Scholar

[17]

H. R. Thieme and X. -Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed Reaction-Diffusion models, J. Differential Equations, 195 (2003), 430-470.   Google Scholar

[18]

A. I. Volpert, V. A. Volpert and V. A. Volpert, Traveling Wave Solutions of Parabolic Systems, Translations of Mathematical Monographs, Amer. Math. Soc. Providence, RI, 140, (1994). Google Scholar

[19]

C. C. WangR. S. LiuJ. P. Shi and D. C. Martinez, Spatiotemporal mutualistic model of mistletoes and birds, J. Math. Biol., 68 (2014), 1479-1520.   Google Scholar

[20]

C. C. WangR. S. LiuJ. P. Shi and D. C. Martinez, Traveling waves of a mutualistic model of mistletoes and birds, Discrete Contin. Dyn. Syst. Ser. A, 35 (2015), 1743-1765.   Google Scholar

[21]

D. M. Watson, Mistletoe-a keystone resource in forests and woodlands worldwide, Annual Review of Ecology and Systematics, 32 (2001), 219-249.   Google Scholar

[22]

H. F. Weinberger, Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13 (1982), 353-396.   Google Scholar

[23]

P. X. WengH. X. Huang and J. H. Wu, Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction, IMA J. Appl. Math., 68 (2003), 409-439.   Google Scholar

[24]

P. X. Weng and Z. T. Xu, Survey on progress for asymptotic speed of propagation and traveling wave solutions of some types of evolution equations (in Chinese), Advances in Mathematics (China), 39 (2010), 1-22.   Google Scholar

[25]

J. H. Wu and X. F. Zou, Traveling wave fronts of reaction-diffusion systems with delays, J. Dynam. Differential Equations, 13 (2001), 651-687.   Google Scholar

[26]

S. L. WuW. T. Li and S. Y. Liu, Asymptotic stability of traveling wave fronts in nonlocal reaction-diffusion equations with delay, J. Math. Anal. Appl., 360 (2009), 439-458.   Google Scholar

[27]

S. L. Wu and S. Y. Liu, Asymptotic speed of spread and traveling fronts for a nonlocal reaction-diffusion model with distributed delay, Appl. Math. Model., 33 (2009), 2757-2765.   Google Scholar

[28]

Z. Q. Xu and P. X. Weng, Traveling waves in a convolution model with infinite distributed delay and non-monotonicity, Nonlinear Anal. Real World Appl., 12 (2011), 633-647.   Google Scholar

[29]

Z. X. Yu and R. Yuan, Traveling waves of a nonlocal dispersal delayed age-structured population model, Japan J. Indust. Appl. Math., 30 (2013), 165-184.   Google Scholar

[30]

X. J. Yu, P. X. Weng and Y. H. Huang, Traveling wavefronts of competing pioneer and climax model with nonlocal diffusion, Abstr. Appl. Anal. , (2013), Art. ID 725495, 12 pp. Google Scholar

[31]

G. B. ZhangW. T. Li and G. Lin, Traveling waves in delayed predator-prey systems with nonlocal diffusion and stage structure, Math. Comput. Modelling, 49 (2009), 1021-1029.   Google Scholar

[32]

X. -Q. Zhao, Spatial dynamics of some evolution system in biology, in Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions, World Scientific Publishing Co. Pte. Ltd. Singapore, (2009), 332-363. Google Scholar

[33]

X. -Q. Zhao and W. D. Wang, Fisher waves in an epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 1117-1128.   Google Scholar

show all references

References:
[1]

F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 165, 2010. Google Scholar

[2]

O. Diekmann, Thresholds and traveling waves for the geographical spread of infection, J. Math. Biol., 6 (1978), 109-130.   Google Scholar

[3]

J. Fang and X. -Q. Zhao, Traveling waves for monotone semiflows with weak compactness, SIAM J. Math. Anal., 46 (2014), 3678-3704.   Google Scholar

[4]

P. C. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, in Trends in Nonlinear Analysis, Springer, Berlin, (2003), 153-191. Google Scholar

[5]

B. Gilding and R. Kersner, Traveling Waves in Nonlinear Diffusion Convection Reaction, Basel: Birkhäuser Verlag, 2004. Google Scholar

[6]

S. A. Gourley and J. H. Wu, Delayed nonlocal diffusive systems in biological invasion and disease spread, Nonlinear Dynamic and Evolution Equations, Fields Inst. Commun. Amer. Math. Soc. Providence, RI, 48 (2006), 137-200.   Google Scholar

[7]

J. K. Hale, Theory of Functional Differential Equations, Applied Mathematical Sciences, 3, Springer-Verlag, New York-Heidelberg, 1977. Google Scholar

[8]

V. HutsonS. MartinezK. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.   Google Scholar

[9]

M. KotM. A. Lewis and P. Van den Driessche, Dispersal data and the spread of invading organisms, Ecology, 77 (1996), 2027-2042.   Google Scholar

[10] J. Kuijt, The Biology of Parasitic Flowering Plants, University of California Press, Berkeley, 1969.   Google Scholar
[11]

J. D. Murray, Mathematical Biology: Ⅰ and Ⅱ, Spriner-Verlag, New York, 2002. Google Scholar

[12]

S. X. PanW. T. Li and G. Lin, Travelling wave fronts in nonlocal delayed reaction-diffusion systems and applications, Z. Angew. Math. Phys., 60 (2009), 377-392.   Google Scholar

[13]

J. Radciliffe and L. Rass, Spatial deterministic epidemics, Mathematical Surveys and Monographs. Amer. Math. Soc. Providence, RI, 102, 2003. Google Scholar

[14]

W. X. Shen, Traveling waves in diffusive random media, J. Dynam. Differential Equations, 16 (2004), 1011-1060.   Google Scholar

[15]

N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice, Oxford Uinversity Press, 1997. Google Scholar

[16]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 41,1995. Google Scholar

[17]

H. R. Thieme and X. -Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed Reaction-Diffusion models, J. Differential Equations, 195 (2003), 430-470.   Google Scholar

[18]

A. I. Volpert, V. A. Volpert and V. A. Volpert, Traveling Wave Solutions of Parabolic Systems, Translations of Mathematical Monographs, Amer. Math. Soc. Providence, RI, 140, (1994). Google Scholar

[19]

C. C. WangR. S. LiuJ. P. Shi and D. C. Martinez, Spatiotemporal mutualistic model of mistletoes and birds, J. Math. Biol., 68 (2014), 1479-1520.   Google Scholar

[20]

C. C. WangR. S. LiuJ. P. Shi and D. C. Martinez, Traveling waves of a mutualistic model of mistletoes and birds, Discrete Contin. Dyn. Syst. Ser. A, 35 (2015), 1743-1765.   Google Scholar

[21]

D. M. Watson, Mistletoe-a keystone resource in forests and woodlands worldwide, Annual Review of Ecology and Systematics, 32 (2001), 219-249.   Google Scholar

[22]

H. F. Weinberger, Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13 (1982), 353-396.   Google Scholar

[23]

P. X. WengH. X. Huang and J. H. Wu, Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction, IMA J. Appl. Math., 68 (2003), 409-439.   Google Scholar

[24]

P. X. Weng and Z. T. Xu, Survey on progress for asymptotic speed of propagation and traveling wave solutions of some types of evolution equations (in Chinese), Advances in Mathematics (China), 39 (2010), 1-22.   Google Scholar

[25]

J. H. Wu and X. F. Zou, Traveling wave fronts of reaction-diffusion systems with delays, J. Dynam. Differential Equations, 13 (2001), 651-687.   Google Scholar

[26]

S. L. WuW. T. Li and S. Y. Liu, Asymptotic stability of traveling wave fronts in nonlocal reaction-diffusion equations with delay, J. Math. Anal. Appl., 360 (2009), 439-458.   Google Scholar

[27]

S. L. Wu and S. Y. Liu, Asymptotic speed of spread and traveling fronts for a nonlocal reaction-diffusion model with distributed delay, Appl. Math. Model., 33 (2009), 2757-2765.   Google Scholar

[28]

Z. Q. Xu and P. X. Weng, Traveling waves in a convolution model with infinite distributed delay and non-monotonicity, Nonlinear Anal. Real World Appl., 12 (2011), 633-647.   Google Scholar

[29]

Z. X. Yu and R. Yuan, Traveling waves of a nonlocal dispersal delayed age-structured population model, Japan J. Indust. Appl. Math., 30 (2013), 165-184.   Google Scholar

[30]

X. J. Yu, P. X. Weng and Y. H. Huang, Traveling wavefronts of competing pioneer and climax model with nonlocal diffusion, Abstr. Appl. Anal. , (2013), Art. ID 725495, 12 pp. Google Scholar

[31]

G. B. ZhangW. T. Li and G. Lin, Traveling waves in delayed predator-prey systems with nonlocal diffusion and stage structure, Math. Comput. Modelling, 49 (2009), 1021-1029.   Google Scholar

[32]

X. -Q. Zhao, Spatial dynamics of some evolution system in biology, in Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions, World Scientific Publishing Co. Pte. Ltd. Singapore, (2009), 332-363. Google Scholar

[33]

X. -Q. Zhao and W. D. Wang, Fisher waves in an epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 1117-1128.   Google Scholar

Figure 1.  The solution of system (5) with parameters in Table 1 and initial value condition: $u_{10}(t, x)=0.1$, $u_{20}(t, x)=0.1$, $t\in[-1,0]$
Figure 2.  (1) $\lambda_{1}(\nu)=-d_{m}+\frac{\alpha e^{-d_{i}\tau}}{\omega}\bar{k}(\nu)e^{-\lambda_{1}(\nu)\tau}$;
(2) $\lambda_{2}(\nu)=D\bar{J}(\nu)-1-D$
Figure 3.  (1) $\mathbf{\Phi}_{1}(\nu)=-\frac{d_{m}}{\nu}+\frac{\alpha e^{-d_{i}\tau}}{\omega}\frac{\bar{k}(\nu)}{\nu}e^{-\nu\mathbf{\Phi}_{1}(\nu)\tau}$;
(2)$\mathbf{\Phi}_{2}(\nu)=\frac{D\bar{J}(\nu)-1-D}{\nu}$
Figure 4.  (1) $\lambda_1(\nu)=-d_{m}+ \frac{\alpha e^{-d_{i}\tau}}{\omega }\bar{k}(\nu)e^{-\lambda_1(\nu)\tau}$;
(2) $\hat{\lambda}(\nu)=d\bar{k}(\nu)+D\bar{J}(\nu)-1-D$;
(3) $\mathbf{ \Phi}_{1}(\nu)=-\frac{d_{m}}{\nu}+ \frac{\alpha e^{-d_{i}\tau}}{\omega }\frac{\bar{k}(\nu)}{\nu}e^{-\lambda_1(\nu)\tau}$
Figure 5.  (1) $\mathbf{\Phi}_{1}(\nu)=-\frac{d_{m}}{\nu}+\frac{\alpha e^{-d_{i}\tau}}{\omega\nu}e^{-\nu\mathbf{\Phi}_{1}(\nu)\tau}$;
(2) $\mathbf{\Phi}_{2}(\nu)=\frac{D\bar{J}(\nu)-1-D}{\nu}$
Figure 6.  The traveling wave solution found with parameters in Table 1 and initial value condition: $u_{10}(t, x)=0.001$, $u_{20}(t, x)=0.001$, $t\in[-1,0]$
Table 1.  Parameter values for simulations
$k(y)$ $J(y)$ $\bar{k}(\nu)$ $\bar{J}(\nu)$ $d_{m}$ $\omega$ $\alpha$ $d$ $d_{i}$ $\tau$ $D$
$\frac{1}{\sqrt{4\pi}}e^{-\frac{y^{2}}{4}}$ $\frac{1}{\sqrt{4\pi}}e^{-\frac{y^{2}}{4}}$ $e^{\nu^{2}}$ $e^{\nu^{2}}$ 0.1 1 0.7 0.3 0.3 1 0.5
$k(y)$ $J(y)$ $\bar{k}(\nu)$ $\bar{J}(\nu)$ $d_{m}$ $\omega$ $\alpha$ $d$ $d_{i}$ $\tau$ $D$
$\frac{1}{\sqrt{4\pi}}e^{-\frac{y^{2}}{4}}$ $\frac{1}{\sqrt{4\pi}}e^{-\frac{y^{2}}{4}}$ $e^{\nu^{2}}$ $e^{\nu^{2}}$ 0.1 1 0.7 0.3 0.3 1 0.5
[1]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[2]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[3]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[4]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[5]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[6]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[7]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[8]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[9]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[10]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[11]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[12]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[13]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[14]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[15]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[16]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[17]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[18]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[19]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[20]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (27)
  • HTML views (38)
  • Cited by (0)

Other articles
by authors

[Back to Top]