Advanced Search
Article Contents
Article Contents

Convergence of global and bounded solutions of a two-species chemotaxis model with a logistic source

The first author is partially supported by Chongqing graduate student research innovation project (Grant No. CYB15042) and Chongqing Nova program, and the second author is partially supported by NSFC (Grant No. 11371384 and 11571062) and the Basic and Advanced Research Project of CQC-STC (Grant No. cstc2015jcyjBX0007).
Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we consider a system of three parabolic equations in high-dimensional smoothly bounded domain

    $\left\{\begin{array}{llll}u_t=\Delta u-\chi_1\nabla\cdot( u\nabla w)+\mu_1u(1-u-a_1v),\quad &x\in \Omega,\quad t>0,\\v_t=\Delta v-\chi_2\nabla\cdot( v\nabla w)+\mu_2v(1-a_2u-v),\quad &x\in\Omega,\quad t>0,\\w_t=\Delta w- w+u+v,\quad &x\in\Omega,\quad t>0,\\\end{array}\right.$

    which describes the mutual competition between two populations on account of the Lotka-Volterra dynamics.

    For any cross-diffusivities $\chi_1>0$ and $\chi_2>0$ and the rates $a_1>0$ and $a_2>0$, it is proved that the global classical bounded solutions exist for sufficiently regular initial data when the parameters $\mu_1$ and $\mu_2$ are sufficiently large. In deriving the convergence of solutions to this system, we need to distinguish two cases $a_1, a_2\in[0, 1)$ and $a_1>1$ and $0\leq a_2 < 1$ to prove globally asymptotic stability.

    Mathematics Subject Classification: Primary:35B40, 92C17;Secondary:35B65, 35K45.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1]

    S. Ahmad, On the nonautonomous Volterra-Lotka competition equations, Proc. Amer. Math. Soc, 117 (1993), 199-204.


    X. Bai and M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553-583.


    P. Biler, E. Espejo and I. Guerra, Blow up in higher dimensional two species chemotactic systems, Commun. Pure Appl. Anal., 12 (2013), 89-98.


    P. Brown, Decay to uniform states in ecological interactions, SIAM J. Appl. Math., 38 (1980), 22-37.


    X. Cao, Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, Discrete Cont. Dyns. S-A., 35 (2015), 1891-1904.


    T. Cieślak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Differential Equations, 252 (2012), 5832-5851.


    C. Conca, E. Espejo and K. Vilches, Remarks on the blow up and global existence for a two species chemotactic Keller-Segel system in R2, European J. Appl. Math., 22 (2011), 553-580.

    [8] P. de Mottoni, Qualitative Analysis for Some Quasilinear Parabolic Systems, Inst Math Pol Acad Sci, 1979.

    E. Espejo, A. Stevens and J. Velzquez, Simultaneous finite time blow-up in a two-species model for chemotaxis, Analysis (Munich), 29 (2009), 317-338.


    A. Fasano, A. Mancini and M. Primicerio, Equilibrium of two populations subjected to chemotaxis, Math. Mod Meth Appl. Sci., 14 (2004), 503-533.


    A. Friedman and J. I. Tello, Stability of solutions of chemotaxis equations in reinforced random walks, J. Math. Anal. Appl., 272 (2002), 138-163.


    C. Gai, Q. Wang and J. Yan, Qualitative analysis of a Lotka-Volterra competition system with advection, Discrete Contin. Dyn. Syst., 35 (2015), 1239-1284.


    H. Gajewski and K. Zacharias, Global behavior of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77-114.


    D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences, Jahresber. Deutsch. Math.-Verien., 105 (2003), 103-165.


    D. Horstemann, Generalizing the Keller-Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species, J. Nonlinear Sci., 21 (2011), 231-270.


    D. Horstemann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177.


    D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.


    S. Ishida, K. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolicparabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010.


    W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Am. Math. Soc., 329 (1992), 819-824.


    E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.


    F. Kelly, K. Dapsis and D. Lauffenburger, Effects of bacterial chemotaxis on dynamics of microbial competition, Microb Ecol., 16 (1988), 115-131.


    R. Kowalczyk and Z. Szymánska, On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., 343 (2008), 379-398.


    J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differential Equations, 258 (2015), 1158-1191.


    D. Lauffenburger, R. Aris and K. Keller, Effects of cell motility and chemotaxis on microbial population growth, Biophys J., 40 (1982), 209-219.


    Y. Li and Y. Li, Finite-time blow-up in higher dimensional fully-parabolic chemotaxis system for two species, Nonlinear Anal., 109 (2014), 72-84.


    K. Lin and C. Mu, Global dynamics in a fully parabolic chemotaxis system with logistic source, Discrete Contin. Dyn. Syst., 36 (2016), 5025-5046.


    K. Lin, C. Mu and L. Wang, Boundedness in a two-species chemotaxis system, Math. Methods Appl. Sci., 38 (2015), 5085-5096.


    Y. Lou and W. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.


    Y. Lou and M. Winkler, Global existence and uniform boundedness of smooth solutions to a cross-diffusion system with equal diffusion rates, Comm. Partial Differential Equations, 40 (2015), 1905-1941.


    N. Mizoguchi and P. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Ann. Inst. H. Poincare Anal. Non Lineaire, 31 (2014), 851-875.


    M. Mizukami and T. Yokota, Global existence and asymptotic stability of solutions to a twospecies chemotaxis system with any chemical diffusion, J. Differential Equations, 261 (2016), 2650-2669.

    [32] J. Murray, Mathematical Biology, 2nd edition, Biomathematics series, Springer, Berlin, 1993.

    T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. Inequal. Appl., 6 (2001), 37-55.


    T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj. Ser. Int., 40 (1997), 411-433.


    M. Negreanu and J. I. Tello, On a two species chemotaxis model with slow chemical diffusion, SIAM J. MAth. Anal., 46 (2014), 3761-3781.


    K. Osaki, T. Tsujikawa, A. Yagi and M. Mimura, Exponential attractor for a chemotaxisgrowth system of equations, Nonlinear Anal., 51 (2002), 119-144.


    K. Osaki and A. Yagi, Finite dimensional attractors for one-dimensional Keller-Segel equations, Funkc. Ekvacioj. Ser. Int., 44 (2001), 441-469.


    S. Shim, Uniform boundedness and convergence of solutions to cross-diffusion systems, J. Differential Equations, 185 (2002), 281-305.


    C. Stinner, C. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969-2007.


    C. Stinner, C. Stinner, J. Tello and M. Winkler, Competitive exclusion in a two-species chemotaxis model, J. Math. Biol., 68 (2014), 1607-1626.


    Y. Tao and Z. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36.


    Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.


    Y. Tao and M. Winkler, Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system, Z. Angew. Math. Phys., 66 (2015), 2555-2573.


    J. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007), 849-877.


    J. Tello and M. Winkler, Stabilization in a two-species chemotaxis system with a logistic source, Nonlinearity, 25 (2012), 1413-1425.

    [46] Q. Wang, J. Yang and F. Yu, Global existence and uniform boundedness in advective LotkaVolterra competition system with nonlinear diffusion, preprint, arXiv: 1605.05308.
    [47] Q. Wang, J. Yang and L. Zhang, Time periodic and stable patterns of a two-competing-species Keller-Segel chemotaxis model effect of cellular growth, preprint, arXiv: 1505.06463.

    Q. Wang, L. Zhang, J. Yang and J. Hu, Global existence and steady states of a two competing species Keller-Segel chemotaxis model, Kinet. Relat. Models, 8 (2015), 777-807.


    M. Winkler, Chemotaxis with logistic source: Very weak global solutions and boundedness properties, J. Math. Anal Appl, 348 (2008), 708-729.


    M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537.


    M. Winkler, Aggregation versus global diffusive behavior in the higher-dimensional KellerSegel model, J. Differential Equations, 248 (2010), 2889-2905.


    M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767.


    M. Winkler, Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, J. Differential Equations, 257 (2014), 1056-1077.


    M. Winkler, Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity, Calc. Var. Partial Differential Equations, 54 (2015), 3789-3828.


    G. Wolansky, Multi-components chemotaxis system in absence of confict, European J. Appl. Math., 13 (2002), 641-661.


    M. Zeeman, Extinction in competitive Lotka-Volterra systems, Proc. Amer. Math. Soc., 123 (1995), 87-96.


    Q. Zhang and Y. Li, Global boundedness of solutions to a two-species chemotaxis system, Z. Angew. Math. Phys., 66 (2002), 83-93.

  • 加载中

Article Metrics

HTML views(548) PDF downloads(150) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint