• Previous Article
    Risk-minimizing pricing and Esscher transform in a general non-Markovian regime-switching jump-diffusion model
  • DCDS-B Home
  • This Issue
  • Next Article
    Backward compact attractors for non-autonomous Benjamin-Bona-Mahony equations on unbounded channels
September  2017, 22(7): 2587-2594. doi: 10.3934/dcdsb.2017098

On some difference equations with exponential nonlinearity

Department of Civil Engineering, University of Patras, 26500 Patras, Greece

In memory of Professor Evangelos K. Ifantis

Received  July 2016 Revised  December 2016 Published  March 2017

The problem of the existence of complex $\ell_1$ solutions of two difference equations with exponential nonlinearity is studied, one of which is nonautonomous. As a consequence, several information are obtained regarding the asymptotic stability of their equilibrium points, as well as the corresponding generating function and $z-$ transform of their solutions. The results, which are obtained using a general theorem based on a functional-analytic technique, provide also a rough estimate of the region of attraction of each equilibrium point for the autonomous case. When restricted to real solutions, the results are compared with other recently published results.

Citation: Eugenia N. Petropoulou. On some difference equations with exponential nonlinearity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2587-2594. doi: 10.3934/dcdsb.2017098
References:
[1]

A. S. Ackleh and P. L. Salceanu, Competitive exclusion and coexistence in an $n-$species Ricker model, J. Biol. Dynamics, 9 (2015), 321-331.  doi: 10.1080/17513758.2015.1020576.  Google Scholar

[2]

D. Aruğaslan and L. Güzel, Stability of the logistic population model with generalized piecewise constant delays, Adv. Difference Equations, 2015 (2015). Google Scholar

[3]

I. Györi and L. Horváth, A new view of the $\ell^p$ -theory for a system of higher order difference equations, Comput. Math. Appl., 59 (2010), 2918-2932.  doi: 10.1016/j.camwa.2010.02.010.  Google Scholar

[4]

I. Györi and L. Horváth, $\ell^p$ -solutions and stability analysis of difference equations using the Kummer's test, Appl. Math. Comput., 217 (2011), 10129-10145.  doi: 10.1016/j.amc.2011.05.008.  Google Scholar

[5]

T. Hüls and C. Pötzsche, Qualitative analysis of a nonautonomous Beverton-Holt Ricker model, SIAM J. Appl. Dyn. Syst., 13 (2014), 1442-1488.  doi: 10.1137/140955434.  Google Scholar

[6]

E. K. Ifantis, On the convergence of power series whose coefficients satisfy a Poincaré-type linear and nonlinear difference equation, Complex Variables Theory Appl., 9 (1987), 63-80.  doi: 10.1080/17476938708814250.  Google Scholar

[7]

Y. Kang and H. Smith, Global dynamics of a discrete two-species Lottery-Ricker competition model, J. Biol. Dynamics, 6 (2012), 358-376.  doi: 10.1080/17513758.2011.586064.  Google Scholar

[8]

R. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459-467.  doi: 10.1007/978-0-387-21830-4_7.  Google Scholar

[9]

G. PapaschinopoulosN. Fotiades and C. J. Schinas, On a system of difference equations including negative exponential terms, J. Differ. Equations Appl., 20 (2014), 717-732.  doi: 10.1080/10236198.2013.814647.  Google Scholar

[10]

G. PapaschinopoulosM. A. Radin and C. J. Schinas, On the system of two difference equations of exponential form: $x_{n+1}=a+bx_{n-1}e^{-y_{n}}$, $y_{n+1}=c+dy_{n-1}e^{-x_{n}}$, Math. Comp. Mod., 54 (2011), 2969-2977.  doi: 10.1016/j.mcm.2011.07.019.  Google Scholar

[11]

E. N. Petropoulou and P. D. Siafarikas, Functional analysis and partial difference equations, in Some Recent Advances in Partial Difference Equations (ed. E. N. Petropoulou), Bentham eBooks (2010), 49–76. Google Scholar

[12]

W. E. Ricker, Stock and recruitmnet, J. Fish. Res. Board Canada, 11 (1954), 559-623.   Google Scholar

[13]

G. StefanidouG. Papaschinopoulos and C. J. Schinas, On a system of two exponential type difference equations, Comm. Appl. Nonlinear Anal., 17 (2010), 1-13.   Google Scholar

[14]

S. Stevic, On a discrete epidemic model Discrete Dynam. Nat. Soc. , 2007 (2007), Article ID 87519, 10pp. doi: 10.1155/2007/87519.  Google Scholar

show all references

References:
[1]

A. S. Ackleh and P. L. Salceanu, Competitive exclusion and coexistence in an $n-$species Ricker model, J. Biol. Dynamics, 9 (2015), 321-331.  doi: 10.1080/17513758.2015.1020576.  Google Scholar

[2]

D. Aruğaslan and L. Güzel, Stability of the logistic population model with generalized piecewise constant delays, Adv. Difference Equations, 2015 (2015). Google Scholar

[3]

I. Györi and L. Horváth, A new view of the $\ell^p$ -theory for a system of higher order difference equations, Comput. Math. Appl., 59 (2010), 2918-2932.  doi: 10.1016/j.camwa.2010.02.010.  Google Scholar

[4]

I. Györi and L. Horváth, $\ell^p$ -solutions and stability analysis of difference equations using the Kummer's test, Appl. Math. Comput., 217 (2011), 10129-10145.  doi: 10.1016/j.amc.2011.05.008.  Google Scholar

[5]

T. Hüls and C. Pötzsche, Qualitative analysis of a nonautonomous Beverton-Holt Ricker model, SIAM J. Appl. Dyn. Syst., 13 (2014), 1442-1488.  doi: 10.1137/140955434.  Google Scholar

[6]

E. K. Ifantis, On the convergence of power series whose coefficients satisfy a Poincaré-type linear and nonlinear difference equation, Complex Variables Theory Appl., 9 (1987), 63-80.  doi: 10.1080/17476938708814250.  Google Scholar

[7]

Y. Kang and H. Smith, Global dynamics of a discrete two-species Lottery-Ricker competition model, J. Biol. Dynamics, 6 (2012), 358-376.  doi: 10.1080/17513758.2011.586064.  Google Scholar

[8]

R. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459-467.  doi: 10.1007/978-0-387-21830-4_7.  Google Scholar

[9]

G. PapaschinopoulosN. Fotiades and C. J. Schinas, On a system of difference equations including negative exponential terms, J. Differ. Equations Appl., 20 (2014), 717-732.  doi: 10.1080/10236198.2013.814647.  Google Scholar

[10]

G. PapaschinopoulosM. A. Radin and C. J. Schinas, On the system of two difference equations of exponential form: $x_{n+1}=a+bx_{n-1}e^{-y_{n}}$, $y_{n+1}=c+dy_{n-1}e^{-x_{n}}$, Math. Comp. Mod., 54 (2011), 2969-2977.  doi: 10.1016/j.mcm.2011.07.019.  Google Scholar

[11]

E. N. Petropoulou and P. D. Siafarikas, Functional analysis and partial difference equations, in Some Recent Advances in Partial Difference Equations (ed. E. N. Petropoulou), Bentham eBooks (2010), 49–76. Google Scholar

[12]

W. E. Ricker, Stock and recruitmnet, J. Fish. Res. Board Canada, 11 (1954), 559-623.   Google Scholar

[13]

G. StefanidouG. Papaschinopoulos and C. J. Schinas, On a system of two exponential type difference equations, Comm. Appl. Nonlinear Anal., 17 (2010), 1-13.   Google Scholar

[14]

S. Stevic, On a discrete epidemic model Discrete Dynam. Nat. Soc. , 2007 (2007), Article ID 87519, 10pp. doi: 10.1155/2007/87519.  Google Scholar

[1]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[2]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[3]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[4]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[5]

Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, 2021, 20 (2) : 511-532. doi: 10.3934/cpaa.2020278

[6]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[7]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[8]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[9]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[10]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[11]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[12]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[13]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[14]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[15]

Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari. The multi-patch logistic equation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021025

[16]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[17]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[18]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[19]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[20]

Maicon Sônego. Stable transition layers in an unbalanced bistable equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020370

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (79)
  • HTML views (76)
  • Cited by (0)

Other articles
by authors

[Back to Top]