[1]
|
L. Ahlfors and M. Heins, Questions of regularity connected with the Phragmén-Lindelöf principle, Ann. of Math., 50 (1949), 341-346.
|
[2]
|
H. Aikawa, On the behavior at infinity of nonnegative superharmonic functions in a half space, Hiroshima Math. J., 11 (1981), 425-441.
|
[3]
|
H. Aikawa and M. Essén, Potential theory-selected topics. Lecture Notes in Mathematics, 1633, Springer-Verlag, Berlin, 1996.
|
[4]
|
V. S. Azarin, Generalization of a theorem of Hayman's on a subharmonic function in an n-dimensional cone (Russian), Mat. Sb. (N.S.), 66 (1965), 248-264.
|
[5]
|
R. Courant and D. Hilbert, Methods of Mathematical Physics. Vol. I. Interscience Publishers, Inc. , New York, N. Y. , 1953.
|
[6]
|
M. Cranston, Conditional Brownian motion, Whitney squares and the conditional gauge theorem, Seminar on Stochastic Processes, 1988 (Gainesville, FL, 1988), 109-119, Progr. Probab. , 17, Birkhäuser Boston, Boston, MA, 1989.
|
[7]
|
M. Cranston, E. Fabes and Z. Zhao, Conditional gauge and potential theory for the Schrödinger operator, Trans. Amer. Math. Soc., 307 (1988), 171-194.
|
[8]
|
M. Essén and H. L. Jackson, On the covering properties of certain exceptional sets in a half-space, Hiroshima Math. J., 10 (1980), 233-262.
|
[9]
|
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.
|
[10]
|
P. Hartman, Ordinary Differential Equations, John Wiley and Sons, Inc. , New York-LondonSydney, 1964.
|
[11]
|
J. Lelong-Ferrand, Étude au voisinage de la frontière des fonctions surharmoniques positives dans un demi-espace, Ann. Sci. École Norm. Sup., 66 (1949), 125-159.
|
[12]
|
B. Ya. Levin and A. I. Kheyfits, Asymptotic behavior of subfunctions of time-independent Schrödinger operator, in Some Topics on Value Distribution and Differentiability in Complex and P-adic Analysis (eds. A. Escassut, W. Tutschke and C. C. Yang), Science Press, 11 (2008), 323-397.
|
[13]
|
I. Miyamoto and H. Yoshida, Two criterions of Wiener type for minimally thin sets and rarefied sets in a cone, J. Math. Soc. Japan., 54 (2002), 487-512.
|
[14]
|
I. Miyamoto, Two criteria of Wiener type for minimally thin sets and rarefied sets in a cylinder, Hokkaido Math. J., 36 (2007), 507-534.
|
[15]
|
Y. Mizuta, Potential theory in Euclidean spaces. GAKUTO International Series. Mathematical Sciences and Applications, 6, Gakkötosho Co. , Ltd. , Tokyo, 1996.
|
[16]
|
L. Qiao, Weak solutions for the stationary Schrödinger equation and its application, Appl. Math. Lett., 63 (2017), 34-39.
|
[17]
|
L. Qiao and G. Deng, Growth properties of modified α-potentials in the upper-half space, Filomat, 27 (2013), 703-712.
|
[18]
|
L. Qiao and G. Deng, Minimally thin sets at infinity with respect to the Schrödinger operator, Sci. Sin. Math., 44 (2014), 1247-1256.
|
[19]
|
L. Qiao and G. Pan, Integral representations of generalized harmonic functions, Taiwanese J. Math., 17 (2013), 1503-1521.
|
[20]
|
L. Qiao and G. Pan, Lower-bound estimates for a class of harmonic functions and applications to Masaev's type theorem, Bull. Sci. Math., 140 (2016), 70-85.
|
[21]
|
L. Qiao and Y. Ren, ntegral representations for the solutions of infinite order of the stationary Schrödinger equation in a cone, Monats. Math., 173 (2014), 593-603.
|
[22]
|
B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc., 7 (1982), 447-526.
|
[23]
|
H. Yoshida and I. Miyamoto, Solutions of the Dirichlet problem on a cone with continuous data, J. Math. Soc. Japan, 50 (1998), 71-93.
|
[24]
|
Y. Zhang, G. Deng and K. Kou, Asymptotic behavior of fractional Laplacians in the half space, Appl. Math. Comput., 254 (2015), 125-132.
|
[25]
|
Y. Zhang, G. Deng and T. Qian, Integral representations of a class of harmonic functions in the half space, J. Differential Equations, 260 (2016), 923-936.
|