The long-time behavior of solutions (more precisely, the existence of random pullback attractors) for an integro-differential parabolic equation of diffusion type with memory terms, more particularly with terms containing both finite and infinite delays, as well as some kind of randomness, is analyzed in this paper. We impose general assumptions not ensuring uniqueness of solutions, which implies that the theory of multivalued dynamical system has to be used. Furthermore, the emphasis is put on the existence of random pullback attractors by exploiting the techniques of the theory of multivalued nonautonomous/random dynamical systems.
Citation: |
[1] |
L. Arnold, Random Dynamical Systems Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.
![]() |
[2] |
T. Caraballo, I. D. Chueshov and J. Real, Pullback attractors for stochastic heat equations in materials with memory, Discrete Cont. Dyn. Systems Series B, 9 (2008), 525-539.
![]() |
[3] |
T. Caraballo, M. J. Garrido-Atienza and B. Schmalfuß, Existence of exponentially attracting stationary solutions for delay evolution equations, Discrete Contin. Dyn. Syst., 18 (2007), 271-293.
doi: 10.3934/dcds.2007.18.271.![]() ![]() ![]() |
[4] |
T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuß and J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Contin. Dyn. Syst., 21 (2008), 415-443.
doi: 10.3934/dcds.2008.21.415.![]() ![]() ![]() |
[5] |
T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuß and J. Valero, Global attractor for a non-autonomous integro-differential equation in materials with memory, Nonlinear Analysis, 73 (2010), 183-201.
doi: 10.1016/j.na.2010.03.012.![]() ![]() ![]() |
[6] |
T. Caraballo, P. E. Kloeden and B. Schmalfuß, Exponentially stable stationary solutions for stochastic evolution equations and their perturbation, Appl Math Optim, 50 (2004), 183-207.
doi: 10.1007/s00245-004-0802-1.![]() ![]() ![]() |
[7] |
T. Caraballo, J. A. Langa and J. Valero, Global attractors for multivalued random dynamical systems, Nonlinear Anal., 48 (2002), 805-829.
doi: 10.1016/S0362-546X(00)00216-9.![]() ![]() ![]() |
[8] |
C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, SpringerVerlag, Berlin, 1977.
![]() |
[9] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9780511666223.![]() ![]() ![]() |
[10] |
C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.
doi: 10.1007/BF00251609.![]() ![]() ![]() |
[11] |
M. Fabrizio and A. Morro, Mathematical Problems in Linear Viscoelasticity SIAM Studies in Applied Mathematics 12, SIAM, Philadelphia, 1992.
![]() |
[12] |
H. Gajewsky, K. Gröger and K. Zacharias, Nichlineare operatorgleichungen und operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974.
![]() |
[13] |
Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay Lecture Notes in Mathematics, 1473, Springer-Verlag, Berlin, 1991.
![]() |
[14] |
S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis, Vol. Ⅰ, volume 419 of Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 1997.
![]() |
[15] |
item {ReHrNo87} (MR919738)
M. Renardy, W. J. Hrusa and J. A. Nohel, Mathematical Problems in Viscoelasticity, Longman, Harlow; John Willey, New York, 1987.
![]() |
[16] |
J. C. Robinson, Infinite-dimensional Dynamical Systems, Cambridge University Press, Cambridge, 2002.
doi: 10.1007/978-94-010-0732-0.![]() ![]() ![]() |
[17] |
B. Schmalfuß, Attractors for the non-autonomous dynamical systems, In International Conference on Differential Equations, Vol. 1, 2 (Berlin, 1999), pp. 684{689, World Sci. Publishing, River Edge, NJ, 2000.
![]() |
[18] |
R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam, 1979.
![]() |