-
Previous Article
Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution
- DCDS-B Home
- This Issue
-
Next Article
Stability results for discontinuous nonlinear elliptic and parabolic problems with a S-shaped bifurcation branch of stationary solutions
Attractors for a random evolution equation with infinite memory: Theoretical results
1. | Dpto. Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla, Spain |
2. | Institut für Mathematik, Institut für Stochastik, Ernst Abbe Platz 2,07737-Jena, Germany |
3. | Universidad Miguel Hernandez de Elche, Centro de Investigación Operativa, Avda. Universidad s/n, 03202-Elche (Alicante), Spain |
The long-time behavior of solutions (more precisely, the existence of random pullback attractors) for an integro-differential parabolic equation of diffusion type with memory terms, more particularly with terms containing both finite and infinite delays, as well as some kind of randomness, is analyzed in this paper. We impose general assumptions not ensuring uniqueness of solutions, which implies that the theory of multivalued dynamical system has to be used. Furthermore, the emphasis is put on the existence of random pullback attractors by exploiting the techniques of the theory of multivalued nonautonomous/random dynamical systems.
References:
[1] |
L. Arnold, Random Dynamical Systems Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. Google Scholar |
[2] |
T. Caraballo, I. D. Chueshov and J. Real, Pullback attractors for stochastic heat equations in materials with memory, Discrete Cont. Dyn. Systems Series B, 9 (2008), 525-539. Google Scholar |
[3] |
T. Caraballo, M. J. Garrido-Atienza and B. Schmalfuß,
Existence of exponentially attracting stationary solutions for delay evolution equations, Discrete Contin. Dyn. Syst., 18 (2007), 271-293.
doi: 10.3934/dcds.2007.18.271. |
[4] |
T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuß and J. Valero,
Non-autonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Contin. Dyn. Syst., 21 (2008), 415-443.
doi: 10.3934/dcds.2008.21.415. |
[5] |
T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuß and J. Valero,
Global attractor for a non-autonomous integro-differential equation in materials with memory, Nonlinear Analysis, 73 (2010), 183-201.
doi: 10.1016/j.na.2010.03.012. |
[6] |
T. Caraballo, P. E. Kloeden and B. Schmalfuß,
Exponentially stable stationary solutions for stochastic evolution equations and their perturbation, Appl Math Optim, 50 (2004), 183-207.
doi: 10.1007/s00245-004-0802-1. |
[7] |
T. Caraballo, J. A. Langa and J. Valero,
Global attractors for multivalued random dynamical systems, Nonlinear Anal., 48 (2002), 805-829.
doi: 10.1016/S0362-546X(00)00216-9. |
[8] |
C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, SpringerVerlag, Berlin, 1977. Google Scholar |
[9] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9780511666223.![]() ![]() |
[10] |
C. M. Dafermos,
Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.
doi: 10.1007/BF00251609. |
[11] |
M. Fabrizio and A. Morro, Mathematical Problems in Linear Viscoelasticity SIAM Studies in Applied Mathematics 12, SIAM, Philadelphia, 1992. Google Scholar |
[12] | H. Gajewsky, K. Gröger and K. Zacharias, Nichlineare operatorgleichungen und operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974. Google Scholar |
[13] |
Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay Lecture Notes in Mathematics, 1473, Springer-Verlag, Berlin, 1991. Google Scholar |
[14] |
S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis, Vol. Ⅰ, volume 419 of Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 1997. Google Scholar |
[15] |
item {ReHrNo87} (MR919738) M. Renardy, W. J. Hrusa and J. A. Nohel, Mathematical Problems in Viscoelasticity, Longman, Harlow; John Willey, New York, 1987. Google Scholar |
[16] |
J. C. Robinson, Infinite-dimensional Dynamical Systems, Cambridge University Press, Cambridge, 2002.
doi: 10.1007/978-94-010-0732-0.![]() ![]() |
[17] |
B. Schmalfuß, Attractors for the non-autonomous dynamical systems, In International Conference on Differential Equations, Vol. 1, 2 (Berlin, 1999), pp. 684{689, World Sci. Publishing, River Edge, NJ, 2000. Google Scholar |
[18] |
R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam, 1979. Google Scholar |
show all references
References:
[1] |
L. Arnold, Random Dynamical Systems Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. Google Scholar |
[2] |
T. Caraballo, I. D. Chueshov and J. Real, Pullback attractors for stochastic heat equations in materials with memory, Discrete Cont. Dyn. Systems Series B, 9 (2008), 525-539. Google Scholar |
[3] |
T. Caraballo, M. J. Garrido-Atienza and B. Schmalfuß,
Existence of exponentially attracting stationary solutions for delay evolution equations, Discrete Contin. Dyn. Syst., 18 (2007), 271-293.
doi: 10.3934/dcds.2007.18.271. |
[4] |
T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuß and J. Valero,
Non-autonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Contin. Dyn. Syst., 21 (2008), 415-443.
doi: 10.3934/dcds.2008.21.415. |
[5] |
T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuß and J. Valero,
Global attractor for a non-autonomous integro-differential equation in materials with memory, Nonlinear Analysis, 73 (2010), 183-201.
doi: 10.1016/j.na.2010.03.012. |
[6] |
T. Caraballo, P. E. Kloeden and B. Schmalfuß,
Exponentially stable stationary solutions for stochastic evolution equations and their perturbation, Appl Math Optim, 50 (2004), 183-207.
doi: 10.1007/s00245-004-0802-1. |
[7] |
T. Caraballo, J. A. Langa and J. Valero,
Global attractors for multivalued random dynamical systems, Nonlinear Anal., 48 (2002), 805-829.
doi: 10.1016/S0362-546X(00)00216-9. |
[8] |
C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, SpringerVerlag, Berlin, 1977. Google Scholar |
[9] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9780511666223.![]() ![]() |
[10] |
C. M. Dafermos,
Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.
doi: 10.1007/BF00251609. |
[11] |
M. Fabrizio and A. Morro, Mathematical Problems in Linear Viscoelasticity SIAM Studies in Applied Mathematics 12, SIAM, Philadelphia, 1992. Google Scholar |
[12] | H. Gajewsky, K. Gröger and K. Zacharias, Nichlineare operatorgleichungen und operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974. Google Scholar |
[13] |
Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay Lecture Notes in Mathematics, 1473, Springer-Verlag, Berlin, 1991. Google Scholar |
[14] |
S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis, Vol. Ⅰ, volume 419 of Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 1997. Google Scholar |
[15] |
item {ReHrNo87} (MR919738) M. Renardy, W. J. Hrusa and J. A. Nohel, Mathematical Problems in Viscoelasticity, Longman, Harlow; John Willey, New York, 1987. Google Scholar |
[16] |
J. C. Robinson, Infinite-dimensional Dynamical Systems, Cambridge University Press, Cambridge, 2002.
doi: 10.1007/978-94-010-0732-0.![]() ![]() |
[17] |
B. Schmalfuß, Attractors for the non-autonomous dynamical systems, In International Conference on Differential Equations, Vol. 1, 2 (Berlin, 1999), pp. 684{689, World Sci. Publishing, River Edge, NJ, 2000. Google Scholar |
[18] |
R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam, 1979. Google Scholar |
[1] |
Mustapha Yebdri. Existence of $ \mathcal{D}- $pullback attractor for an infinite dimensional dynamical system. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021036 |
[2] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[3] |
Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319 |
[4] |
Scott Schmieding, Rodrigo Treviño. Random substitution tilings and deviation phenomena. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021020 |
[5] |
Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074 |
[6] |
Sana Netchaoui, Mohamed Ali Hammami, Tomás Caraballo. Pullback exponential attractors for differential equations with delay. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1345-1358. doi: 10.3934/dcdss.2020367 |
[7] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[8] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 651-680. doi: 10.3934/cpaa.2020284 |
[9] |
Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329 |
[10] |
Lopo F. de Jesus, César M. Silva, Helder Vilarinho. Random perturbations of an eco-epidemiological model. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021040 |
[11] |
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270 |
[12] |
Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147 |
[13] |
Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121 |
[14] |
Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020390 |
[15] |
Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 |
[16] |
Josselin Garnier, Knut Sølna. Enhanced Backscattering of a partially coherent field from an anisotropic random lossy medium. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1171-1195. doi: 10.3934/dcdsb.2020158 |
[17] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[18] |
Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080 |
[19] |
Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020168 |
[20] |
Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 693-716. doi: 10.3934/dcdsb.2020189 |
2019 Impact Factor: 1.27
Tools
Article outline
[Back to Top]